Электронный микроскоп. Электронная микроскопия Большой электронный микроскоп

прибор для наблюдения и фотографирования многократно (до 10 6 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки , ускоренных до больших энергий (30-100 кэв и более) в условиях глубокого вакуума. Физические основы корпускулярно-лучевых оптических приборов были заложены в 1834 (почти за сто лет до появления Электронный микроскоп) У. Р. , установившим аналогии между световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях. Целесообразность создания Электронный микроскоп стала очевидной после выдвижения в 1924 о , а технические предпосылки были созданы немецким физиком X. Бушем, который исследовал фокусирующие осесимметричных полей и разработал магнитную электронную линзу (1926). В 1928 немецкие учёные М. Кнолль и Э. Руска приступили к созданию первого магнитного просвечивающего Электронный микроскоп (ПЭМ) и спустя три года получили изображение объекта, сформированное пучками . В последующие годы (М. фон Арденне, 1938; В. К. , 1942) были построены первые растровые Электронный микроскоп (РЭМ), работающие по принципу сканирования (развёртывания), т. е. последовательного от точки к точке перемещения тонкого электронного пучка (зонда) по объекту. К середине 1960-х гг. РЭМ достигли высокого технического совершенства, и с этого времени началось их применение в научных исследованиях. ПЭМ обладают самой высокой (PC), превосходя по этому параметру световые микроскопы в несколько тыс. раз. Т. н. предел разрешения, характеризующий прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2-3 . При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы. При фотографировании периодических структур, таких как атомные решёток кристаллов, удаётся реализовать разрешение менее 1 . Столь высокие разрешения достигаются благодаря чрезвычайно малой длине (см. ). Оптимальным диафрагмированием [см. в электронной (и ионной) оптике] удаётся снизить (влияющую на PC Электронный микроскоп) при достаточно малой дифракционной ошибке. Эффективных методов коррекции в Электронный микроскоп (см. ) не найдено. Поэтому в ПЭМ магнитные (ЭЛ), обладающие меньшими , полностью вытеснили электростатические ЭЛ. Выпускаются ПЭМ различного назначения. Их молено разделить на 3 группы: Электронный микроскоп высокого разрешения, упрощённые ПЭМ и Электронный микроскоп с повышенным ускоряющим .

ПЭМ с высокой разрешающей способностью (2-3 Å ) - как , приборы многоцелевого назначения. С помощью дополнительных устройств и приставок в них можно наклонять объект в разных на большие углы к оптической оси, нагревать, охлаждать, деформировать его, осуществлять , исследования методами и пр. Ускоряющее электроны достигает 100-125 кв, регулируется ступенеобразно и отличается высокой стабильностью: за 1-3 мин оно изменяется не более чем на 1-2 миллионные доли от исходного . Изображение типичного ПЭМ описываемого типа приведено на рис. 1 . В его оптической системе (колонне) с помощью специальной вакуумной системы создаётся вакуум ( до 10 -6 мм рт. ст.). Схема оптической системы ПЭМ изображена на рис. 2 . Пучок , которых служит накалённый катод, (формируется в и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное «пятно» малых размеров (при регулировке пятна может меняться от 1 до 20 мкм). После сквозь объект часть рассеивается и задерживается диафрагмой. Нерассеянные электроны проходят через отверстие диафрагмы и фокусируются в предметной промежуточной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя проекционная линза формирует изображение на флуоресцирующем экране, который светится под воздействием электронов. Увеличение Электронный микроскоп равно увеличений всех линз. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, т. к. толщина, и химический состав объекта меняются от точки к точке. Соответственно изменяется число электронов, задержанных апертурной диафрагмой после прохождения различных точек объекта, а следовательно, и плотность тока на изображении, которая преобразуется в на экране. Под экраном располагается магазин с фотопластинками. При фотографировании экран убирается, и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется плавным изменением тока, возбуждающего объектива. Токи др. линз регулируют для изменения увеличения Электронный микроскоп

Рис. 3. Сверхвысоковольтный электронный микроскоп (СВЭМ): 1 - бак, в который накачивается электроизоляционный газ (элегаз) до давления 3-5 атм; 2 - электронная пушка; 3 - ускорительная трубка; 4 - конденсаторы высоковольтного источника; 5 - блок конденсорных линз; 6 - объектив; 7, 8, 9- проекционные линзы; 10 - световой микроскоп; 11 - пульт управления.

Растровые Электронный микроскоп (РЭМ) с накаливаемым катодом предназначены для исследования массивных объектов с разрешением от 70 до 200 Å . Ускоряющее в РЭМ можно регулировать в пределах от 1 до 30-50 кв.

Устройство растрового Электронный микроскоп показано на рис. 4 . При помощи 2 или 3 ЭЛ на образца фокусируется узкий электронный зонд. Магнитные отклоняющие развёртывают зонд по заданной площади на объекте. При взаимодействии зонда с объектом возникает несколько видов (рис. 5 ) - вторичные и отражённые электроны; электроны, прошедшие сквозь объект (если он тонкий); рентгеновское и характеристическое ; излучение и т. д.

Рис. 5. Схема регистрации информации об объекте, получаемой в РЭМ. 1 - первичный пучок электронов; 2 - детектор вторичных электронов; 3 - детектор рентгеновского излучения; 4 - детектор отражённых электронов; 5 - детектор светового излучения; 6 - детектор прошедших электронов; 7 - прибор для измерения наведённого на объекте электрического потенциала; 8 - прибор для измерения тока прошедших через объект электронов; 9 - прибор для измерения тока поглощенных в объекте электронов.

Любое из этих излучений может регистрироваться соответствующим коллектором, содержащим датчик, преобразующий в электрические , которые после усиления подаются на (ЭЛТ) и модулируют её пучок. Развёртка пучка ЭЛТ производится с развёрткой электронного зонда в РЭМ, и на экране ЭЛТ наблюдается увеличенное изображение объекта. Увеличение равно отношению высоты кадра на экране ЭЛТ к ширине сканируемой объекта. Фотографируют изображение непосредственно с экрана ЭЛТ. Основным достоинством РЭМ является высокая информативность прибора, обусловленная возможностью наблюдать изображение, используя различных датчиков. С помощью РЭМ можно исследовать , химического состава по объекту, р-n-переходы, производить и многое другое. Образец обычно исследуется без предварительной подготовки. РЭМ находит применение и в технологических процессах ( дефектов микросхем и пр.). Высокая для РЭМ PC реализуется при формировании изображения с использованием вторичных . Она определяется диаметром зоны, из которой эти электроны эмиттируются. Размер зоны в свою очередь зависит от диаметра зонда, свойств объекта, электронов первичного пучка и т. д. При большой глубине проникновения первичных электронов вторичные процессы, развивающиеся во всех направлениях, увеличивают диаметр зоны и PC падает. Детектор вторичных электронов состоит из (ФЭУ) и электронно-фотонного преобразователя, основным элементом которого является с двумя - вытягивающим в виде сетки, находящейся под положительным потенциалом (до нескольких сотен в), и ускоряющим; последний сообщает захваченным вторичным электронам энергию, необходимую для . К ускоряющему электроду приложено около 10 кв; обычно он представляет собой алюминиевое покрытие на сцинтиллятора. Число вспышек сцинтиллятора пропорционально числу вторичных , выбитых в данной точке объекта. После усиления в ФЭУ и в сигнал модулирует пучок ЭЛТ. Величина сигнала зависит от образца, наличия локальных электрических и магнитных микрополей, величины , который в свою очередь зависит от химического состава образца в данной точке. Отражённые электроны регистрируются полупроводниковым (кремниевым) . Контраст изображения обусловлен зависимостью от угла падения первичного пучка и атомного номера . Разрешение изображения, получаемого «в отражённых электронах», ниже, чем получаемого с помощью вторичных (иногда на порядок ). Из-за прямолинейности полёта электронов к коллектору информация об отдельных участках, от которых нет прямого пути к коллектору, теряется (возникают тени). Характеристическое выделяется или рентгеновским кристаллическим или энергодисперсным датчиком - полупроводниковым детектором (обычно из чистого кремния, легированного литием). В первом случае рентгеновские кванты после отражения кристаллом спектрометра регистрируются газовым , а во втором - сигнал, снимаемый с полупроводникового , усиливается малошумящим (который для снижения шума охлаждается жидким азотом) и последующей системой усиления. Сигнал от кристаллического модулирует пучок ЭЛТ, и на экране возникает картина того или иного химического элемента по объекта. На РЭМ производят также локальный рентгеновский . Энергодисперсный детектор регистрирует все элементы от Na до U при высокой чувствительности. Кристаллический спектрометр с помощью набора кристаллов с различными межплоскостными (см. ) перекрывает от Be до U. Существенный недостаток РЭМ - большая длительность процесса «снятия» информации при исследовании объектов. Сравнительно высокую PC можно получить, используя электронный зонд достаточно малого диаметра. Но при этом уменьшается зонда, вследствие чего резко возрастает влияние , снижающего отношение полезного сигнала к шуму. Чтобы отношение «сигнал/шум» не падало ниже заданного уровня, необходимо замедлить сканирования для накопления в каждой точке объекта достаточно большого числа первичных (и соответствующего вторичных). В результате PC реализуется лишь при малых скоростях развёртки. Иногда один кадр формируется в течение 10-15 мин.

Рис. 6. Принципиальная схема просвечивающего растрового электронного микроскопа (ПРЭМ): 1 - автоэмиссионный катод; 2 -промежуточный анод; 3 - анод; 4 - отклоняющая система для юстировки пучка; 5 - диафрагма «осветителя»; 6, 8 - отклоняющие системы для развертки электронного зонда; 7 - магнитная длиннофокусная линза; 9 - апертурная диафрагма; 10 - магнитный объектив; 11 - объект; 12, 14 - отклоняющие системы; 13 - кольцевой коллектор рассеянных электронов; 15 - коллектор нерассеянных электронов (убирается при работе со спектрометром); 16 - магнитный спектрометр, в котором электронные пучки поворачиваются магнитным полем на 90° ; 17 - отклоняющая система для отбора электронов с различными потерями энергии; 18 - щель спектрометра; 19 - коллектор; ВЭ - поток вторичных электронов hn - рентгеновское излучение.

РЭМ с автоэмиссионной пушкой обладают высокой для РЭМ PC (до 30 Å ). В автоэмиссионной пушке (как и в ) используется катод в форме острия, у вершины которого возникает сильное , вырывающее электроны из катода (см. ). Электронная яркость пушки с автоэмиссионным катодом в 10 3 -10 4 раз выше, чем пушки с накалённым катодом. Соответственно увеличивается ток электронного зонда. Поэтому в РЭМ с автоэмиссионной пушкой осуществляют быстрые развёртки, а зонда уменьшают для повышения PC. Однако автоэмиссионный катод работает устойчиво лишь при сверхвысоком вакууме (10 -9 -10 -11 мм рт. ст.), и это усложняет конструкцию таких РЭМ и работу на них.

Просвечивающие растровые Электронный микроскоп (ПРЭМ) обладают столь же высокой PC, как и ПЭМ. В этих приборах применяются автоэмиссионные пушки, обеспечивающие достаточно в зонде диаметром до 2-3 Å . На рис. 6 приведено схематическое изображение ПРЭМ. Две уменьшают диаметр зонда. Ниже объекта расположены - центральный и кольцевой. На первый попадают нерассеянные электроны, и после и усиления соответствующих сигналов на экране ЭЛТ появляется т. н. светлопольное изображение. На кольцевом детекторе собираются рассеянные электроны, создающие т. н. темнопольное изображение. В ПРЭМ можно исследовать более толстые объекты, чем в ПЭМ, т. к. возрастание числа неупруго рассеянных с толщиной не влияет на разрешение (после объекта оптика в ПРЭМ отсутствует). С помощью энергии электроны, прошедшие сквозь объект, разделяются на упруго и неупруго рассеянные пучки. Каждый пучок попадает на свой детектор, и на ЭЛТ наблюдается соответствующее изображение, содержащее дополнительную информацию о рассеивающих объекта. Высокое разрешение в ПРЭМ достигается при медленных развёртках, т. к. в зонде диаметром всего 2-3 Å ток получается слишком малым.

Электронный микроскоп смешанного типа. Сочетание в одном приборепринципов формирования изображения с неподвижным пучком (как в ПЭМ) и сканирования тонкого зонда по объекту позволило реализовать в таком Электронный микроскоп преимущества ПЭМ, РЭМ и ПРЭМ. В настоящее время во всех ПЭМ предусмотрена возможность наблюдения объектов в растровом режиме (с помощью конденсорных линз и , создающих уменьшенное изображение , которое сканируется по объекту отклоняющими системами). Кроме изображения, сформированного неподвижным пучком, получают растровые изображения на экранах ЭЛТ с использованием прошедших и вторичных электронов, характеристические и т. д. Оптическая система такого ПЭМ, расположенная после объекта, даёт возможность работать в режимах, неосуществимых в других приборах. Например, можно одновременно наблюдать на экране ЭЛТ и изображение того же объекта на экране прибора.

Эмиссионные Э. м. создают изображение объекта в электронах, которые эмиттирует сам объект при нагревании, первичным пучком , и при наложении сильного электрического поля, вырывающего электроны из объекта. Эти приборы обычно имеют узкое целевое назначение.

Зеркальные Электронный микроскоп служат главным образом для визуализации электростатического «потенциального рельефа» и магнитных микрополей на объекта. Основным оптическим элементом прибора является , причём одним из служит сам объект, который находится под небольшим отрицательным потенциалом относительно катода пушки. Электронный пучок направляется в зеркало и отражается полем в непосредственной близости от объекта. Зеркало формирует на экране изображение «в отражённых пучках». Микрополя возле поверхности объекта перераспределяют электроны отражённых пучков, создавая на изображении, визуализирующий эти микрополя.

Перспективы развития Электронный микроскоп Повышение PC в изображениях непериодических объектов до 1 Å и более позволит регистрировать не только тяжёлые, но и лёгкие атомы и визуализировать на атомарном уровне. Для создания Электронный микроскоп с подобным разрешением повышают ускоряющее . Сер. физическая», т. 34, 1970; Хокс П., и , пер. с англ., М., 1974; Деркач В. П., Кияшко Г. Ф., Кухарчук М. С., Электронозондовые устройства, К., 1974; Стоянова И. Г., Анаскин И. Ф., Физические основы методов просвечивающей электронной микроскопии, М., 1972; Oatley С. W., The scanning electron microscope, Camb., 1972; Grivet P., Electron optics, 2 ed., Oxf., 1972.

Что такое USB-микроскоп?

USB-микроскоп – это вид цифрового микроскопа. Вместо привычного окуляра здесь установлена цифровая камера, которая захватывает изображение с объектива и переносит его на экран монитора или ноутбука. К компьютеру такой микроскоп подключается очень просто – через обычный USB-кабель. В комплекте с микроскопом всегда идет специальное программное обеспечение, которое позволяет обрабатывать получаемые изображения. Вы сможете делать фотографии, создавать видеоролики, менять контрастность, яркость и размеры картинки. Возможности программного обеспечения зависят от производителя.

USB-микроскоп – это прежде всего компактный увеличительный прибор. Его удобно брать с собой в поездки, на встречи или за город. Обычно USB-микроскоп не может похвастаться большим увеличением, но для изучения монет, мелкого шрифта, предметов искусства, образцов тканей или денежных купюр его возможностей вполне хватает. С помощью такого микроскопа можно исследовать растения, насекомых и любые окружающие вас мелкие предметы.

Где купить электронный микроскоп?

Если вы окончательно определились с выбором модели, электронный микроскоп купить можно на этой страничке. В нашем интернет-магазине вы найдете электронный микроскоп по лучшей цене!

Если вы хотите воочию увидеть электронный микроскоп, а потом принять решение – посетите, ближайший к вам, магазин «Четыре глаза».
Да-да, и возьмите с собой детей! Без покупок и подарков точно не останетесь!

Московский институт электронной техники

Лаборатория электронной микроскопии С.В. Седов

[email protected]

Принцип работы современного растрового электронного микроскопа и его использование для исследования объектов микроэлектроники

Цель работы: знакомство с методиками исследования материалов и микроэлектронных структур при помощи растрового электронного микроскопа.

Продолжительность работы: 4 ч.

Приборы и принадлежности: растровый электронный микроскоп Philips-

SEM-515, образцы микроэлектронных структур.

Устройство и принцип работы растрового электронного микроскопа

1. Введение

Растровая электронная микроскопия - это исследование объекта путем облучения тонко сфокусированным электронным пучком, который развертывается в растр по поверхности образца. В результате взаимодействия сфокусированного электронного пучка с поверхностью образца возникают вторичные электроны, отраженные электроны, характеристическое рентгеновское излучение, ожэ-электроны и фотоны различных энергий. Они рождаются в определенных объемах - областях генерации внутри образца и могут быть использованы для измерения многих его характеристик, таких как топография поверхности, химический состав, электрофизические свойства и т д.

Основной причиной широкого использования растровых электронных микроскоов является высокое разрешение при исследовании массивных объектов, достигающее 1,0 нм (10 Å). Другой важной чертой изображений, получаемых в растровом электронном микроскопе является их объемность, обусловленная большой глубиной резкости прибора. Удобство применения растрового микроскопа в микро-и нанотехнологии объясняется относительной простотой подготовки образца и оперативностью исследования, что позволяет использовать его для межоперационного контроля технологических параметров без значительных потерь времени. Изображение в растровом микроскопе формируется в виде телевизионного сигнала, что существенно упрощает его ввод в компьютер и дальнейшую программную обработку результатов исследований.

Развитие микротехнологий и появление нанотехнологий, где размеры элементов существенно меньше длины волны видимого света, делает растровую электронную микроскопию практически единственной неразрушающей методикой визуального контроля при производстве изделий твердотельной электроники и микромеханики.

2. Взаимодействие электронного луча с образцом

При взаимодействии пучка электронов с твердой мишенью возникает большое число различного рода сигналов. Источником этих сигналов являются области излучения, размеры которых зависят от энергии пучка и атомного номера бомбардируемой мишени. Размерами этой области, при использовании определенного сорта сигнала, определяется разрешение микроскопа. На рис. 1 показаны области возбуждения в образце для разных сигналов.

Полное распределение по энергии электронов, излучаемых образцом

приведено на рис.2. Оно получено при энергии падающего пучка Е 0= 180эВ, по оси ординат отложено число эмиттированых мишенью электронов J s (E), а по оси абсцисс - энергия Е этих электронов. Заметим, что вид зависимости,

приведенной на рис.2, сохраняется и для пучков с энергией 5 – 50 кэВ, используемых в растровых электронных микроскопах.

Г
руппуI составляют упруго отраженные электроны с энергией, близкой к энергии первичного пучка. Они возникают при упругом рассеянии под большими углами. С увеличением атомного номера Z растет упругое рассеяние и увеличивается доля отраженных электронов . Распределение отраженных электронов по энергиям для некоторых элементов приведено на рис.3.

Угол рассеяния 135 0
, W=E/E 0 - нормированная энергия, d/dW - число отраженных электронов на падающий электрон и на единицу энергетического интервала. Из рисунка видно, что при увеличении атомного номера не только растет число отраженных электронов, но и их энергия становится ближе к энергии первичного пучка. Это приводит к возникновению контраста по атомному номеру и позволяет исследовать фазовый состав объекта.

Группа II включает в себя электроны, подвергшиеся многократному неупругому рассеянию и излученные к поверхности после прохождения более или менее толстого слоя материала мишени, потеряв при этом определенную часть своей первоначальной энергии.

Э
лектроны группыIII являются вторичными электронами с малой энергией (менее 50 эВ), которые образуются при возбуждении первичным пучком слабосвязаных электронов внешних оболочек атомов мишени. Основное влияние на количество вторичных электронов оказывает топография поверхности образца и локальные электрические и магнитные поля. Количество выходящих вторичных электронов зависит от угла падения первичного пучка (рис.4). Пусть R 0 – максимальная глубина выхода вторичных электронов. Если образец наклонен, то длина пути в пределах расстояния R 0 от поверхности возрастает: R = R 0 sec 

Следовательно возрастает и количество соударений, при которых рождаются вторичные электроны. Поэтому незначительное изменение угла падения приводит к заметному изменению яркости выходного сигнала. Благодаря тому, что генерация вторичных электронов происходит в основном в приповерхностной области образца (рис.1), разрешение изображения во вторичных электронах близко к размерам первичного электронного пучка.

Характеристическое рентгеновское излучение возникает в результате взаимодействия падающих электронов с электронами внутренних K, L, или М оболочек атомов образца. Спектр характеристического излучения несет информацию о химическом составе объекта. На этом основаны многочисленные методы микроанализа состава. Большинство современных растровых электронных микроскопов оснащено энергодисперсионными спектрометрами для качественного и количественного микроанализа, а так же для создания карт поверхности образца в характеристическом рентгеновском излучении определенных элементов.

3 Устройство растрового электронного микроскопа .

Электронная микроскопия - это метод исследования структур, находящихся вне пределов видимости светового микроскопа и имеющих размеры менее одного микрона (от 1 мк до 1-5 Å).

Действие электронного микроскопа (рис.) основано на использовании направленного потока , который выполняет роль светового луча в световом микроскопе, а роль линз играют магниты (магнитные линзы).

Вследствие того, что различные участки исследуемого объекта по-разному задерживают электроны, на экране электронного микроскопа получается черно-белое изображение изучаемого объекта, увеличенное в десятки и сотни тысяч раз. В биологии и медицине в основном используются электронные микроскопы просвечивающего типа.

Электронная микроскопия возникла в 30-х годах, когда были получены первые изображения некоторых вирусов (вируса табачной мозаики и бактериофагов). В настоящее время электронная микроскопия нашла наиболее широкое применение в , и вирусологии, обусловив создание новых отраслей науки. При электронной микроскопии биологических объектов применяют специальные методы приготовления препаратов. Это необходимо для выявления отдельных компонентов изучаемых объектов (клетки, бактерии, вируса и т. д.), а также для сохранения их структуры в условиях высокого вакуума под пучком электронов. При помощи электронной микроскопии изучается внешняя форма объекта, молекулярная организация его поверхности, с помощью метода ультратонких срезов исследуется внутреннее строение объекта.

Электронная микроскопия в сочетании с биохимическими, цитохимическими методами исследования, иммунофлюоресценцией, а также рентгеноструктурным анализом позволяют судить о составе и функции структурных элементов клеток и вирусов.

Электронный микроскоп 70-х годов прошлого века

Электронная микроскопия - изучение микроскопических объектов при помощи электронного микроскопа.

Электронный микроскоп представляет электронно-оптический инструмент, обладающий разрешающей способностью в несколько ангстрем и позволяющий визуально изучать тонкое строение микроскопических структур и даже некоторых молекул.

В качестве источника электронов для создания электронного пучка, заменяющего световой пучок, служит трехэлектродная пушка, состоящая из катода, управляющего электрода и анода (рис. 1).


Рис. 1. Трехэлектродная пушка: 1 - катод; 2 - управляющий электрод; 3 - пучок электронов; 4 - анод.

Электромагнитные линзы, применяемые в электронном микроскопе вместо оптических, представляют многослойные соленоиды, заключенные в панцири из магнитно-мягкого материала, имеющие на внутренней стороне немагнитный зазор (рис. 2).


Рис. 2. Электромагнитная линза: 1 - полюсной наконечник; 2 - латунное кольцо; 3 - обмотка; 4 - панцирь.

Электрические и магнитные поля, создаваемые в электронном микроскопе, являются аксиально симметричными. Благодаря действию этих полей заряженные частицы (электроны), выходящие из одной точки объекта в пределах небольшого угла, вновь собираются в плоскости изображения. Вся электронно-оптическая система заключена в колонне электронного микроскопа (рис. 3).

Рис. 3. Электронно-оптическая система: 1 - управляющий электрод; 2 - диафрагма первого конденсатора; 3 - диафрагма второго конденсатора; 4 - стигматор второго конденсатора; 5 - объект; 6 - линза объектива; 7 - стигматор линзы объектива; 8 - стигматор промежуточной линзы; 9 - диафрагма проекционной линзы; 10 - катод; 11 - анод; 12 - первый конденсатор; 13 - второй конденсатор; 14 - корректор фокусировки; 15 - столик объектодержателя; 16 - диафрагма линзы объектива; 17 - селекторная диафрагма; 18 - промежуточная линза; 19 - проекционная линза; 20 - экран.

Созданный электронной пушкой пучок электронов направляется в поле действия конденсорных линз, которые позволяют в широких пределах изменять плотность, диаметр и апертуру пучка, падающего на исследуемый объект. В камере объекта установлен столик, конструкция которого обеспечивает перемещение объекта во взаимно перпендикулярных направлениях. При этом можно последовательно осмотреть площадь, равную 4 мм 2 , и выбрать наиболее интересные участки.

За камерой объекта расположена линза объектива, которая позволяет достигать резкого изображения объекта. Она же дает первое увеличенное изображение объекта, и с помощью последующих, промежуточной и проекционной, линз общее увеличение можно довести до максимального. Изображение объекта возникает на экране, люминесцирующем под действием электронов. За экраном расположены фотопластины. Стабильность действия электронной пушки, а также четкость изображения наряду с другими факторами (постоянство высокого напряжения и др.) во многом зависят от глубины разрежения в колонне электронного микроскопа, поэтому качество работы прибора в значительной степени определяется вакуумной системой (насосы, каналы откачки, краны, клапаны, уплотнения) (рис. 4). Необходимое разрежение внутри колонны достигается благодаря высокой эффективности вакуумных насосов.

Предварительное разрежение во всей вакуумной системе создает механический форвакуумный насос, затем вступает в действие масляный диффузионный насос; оба насоса включены последовательно и обеспечивают в колонне микроскопа высокое разрежение. Введение в систему электронного микроскопа масляного бустерного насоса позволило на длительное время отключать форвакуумный насос.


Рис. 4. Вакуумная схема электронного микроскопа: 1 - ловушка, охлаждаемая жидким азотом (хладопровод); 2 - высоковакуумный кран; 3 - диффузионный насос; 4 - обходной клапан; 5 - малый буферный баллон; 6 - бустерный насос; 7 - механический форвакуумный насос предварительного разрежения; 8 - четырехходовой клапанный кран; 9 - большой буферный баллон; 10 - колонна электронного микроскопа; 11 - клапан напуска воздуха в колонну микроскопа.

Электрическая схема микроскопа состоит из источников высокого напряжения, накала катода, питания электромагнитных линз, а также системы, обеспечивающей переменным сетевым напряжением электродвигатель форвакуумного насоса, печь диффузионного насоса и освещение пульта управления. К питающему устройству предъявляются очень высокие требования: например, для высокоразрешающего электронного микроскопа степень нестабильности высокого напряжения не должна превышать 5·10 -6 за 30 сек.

Интенсивный электронный пучок образуется в результате термоэмиссии. Источником накала катода, который представляет собой V-образную вольфрамовую нить, служит высокочастотный генератор. Генерируемое напряжение с частотой колебаний 100-200 кГц обеспечивает получение монохроматического электронного пучка. Питание линз электронного микроскопа обеспечивается постоянным высокостабилизированным током.


Рис. 5. Электронный микроскоп УЭМВ-100Б для исследования живых микроорганизмов.

Выпускаются приборы (рис. 5) с гарантированной разрешающей способностью 4,5 Å; на отдельных уникальных снимках получено разрешение 1,27 Å, приближающееся к размеру атома. Полезное увеличение при этом равно 200 000.

Электронный микроскоп - прецезионный прибор, который требует особых методов приготовления препаратов. Биологические объекты малоконтрастны, поэтому приходится искусственно усиливать контраст препарата. Имеется несколько способов повышения контрастности препаратов. При оттенении препарата под углом платиной, вольфрамом, углеродом и т. д. становится возможным определять на электронномикроскопических снимках размеры по всем трем осям пространственной системы координат. При позитивном контрастировании препарат соединяется с водорастворимыми солями тяжелых металлов (уранилацетат, моноокись свинца, перманганат калия и др.). При негативном контрастировании препарат окружают тонким слоем аморфного вещества высокой плотности, непроницаемого для электронов (молибденовокислый аммоний, уранилацетат, фосфорно-вольфрамовая кислота и др.).

Электронная микроскопия вирусов (вирусоскопия) обусловила значительный прогресс в изучении ультратонкой, субмолекулярной структуры вирусов (см.). Наряду с физическими, биохимическими и генетическими методами исследования применение электронной микроскопии способствовало также возникновению и развитию молекулярной биологии. Предметом изучения этого нового раздела биологии является субмикроскопическая организация и функционирование клеток человека, животных, растений, бактерий и микоплазм, а также организация риккетсий и вирусов (рис. 6). Вирусы, крупные молекулы белка и нуклеиновых кислот (РНК, ДНК), отдельные фрагменты клеток (например, молекулярное строение оболочки бактериальных клеток) можно исследовать при помощи электронного микроскопа после специальной обработки: оттенения металлом, позитивного или негативного контрастирования уранилацетатом или фосфорно-вольфрамовой кислотой, а также другими соединениями (рис. 7).

Рис. 6. Клетка культуры ткани сердца обезьяны циномольгус, инфицированная вирусом натуральной оспы (X 12 000): 1 - ядро; 2 - митохондрии; 3 - цитоплазма; 4 - вирус.
Рис. 7. Вирус гриппа (негативное контрастирование (Х450 000): 1 - оболочка; 2 - рибонуклеопротеид.

Методом негативного контрастирования на поверхности многих вирусов были обнаружены закономерно расположенные группы белковых молекул - капсомеры (рис. 8).

Рис. 8. Фрагмент поверхности капсида вируса герпеса. Видны отдельные капсомеры (X500 000): 1 - вид сбоку; 2 - вид сверху.
Рис. 9. Ультратонкий срез бактерии Salmonella typhimurium (Х80 000): 1 - ядро; 2 - оболочка; 3 - цитоплазма.

Внутреннее строение бактерий и вирусов, а также других более крупных биологических объектов можно изучать только после рассечения их при помощи ультратома и приготовления тончайших срезов толщиной 100-300 Å. (рис. 9). Благодаря улучшению методов фиксации, заливки и полимеризации биологических объектов, применению алмазных и стеклянных ножей при ультратомировании, а также использованию высококонтрастирующих соединений для окрашивания серийных срезов удалось получить ультратонкие срезы не только крупных, но и самых мелких вирусов человека, животных, растений и бактерий.

Как же устроен электронный микроскоп? В чём его отличие от оптического микроскопа, существует ли между ними какая-нибудь аналогия?

В основе работы электронного микроскопа лежит свойство неоднородных электрических и магнитных полей, обладающих вращательной симметрией, оказывать на электронные пучки фокусирующее действие. Таким образом, роль линз в электронном микроскопе играет совокупность соответствующим образом рассчитанных электрических и магнитных полей; соответствующие устройства, создающие эти поля, называют «электронными линзами».

В зависимости от вида электронных линз электронные микроскопы делятся на магнитные, электростатические и комбинированные.

Какого же типа объекты могут быть исследованы с помощью электронного микроскопа?

Так же как и в случае оптического микроскопа объекты, во-первых, могут быть «самосветящимися», т. е. служить источником электронов. Это, например, накаленный катод или освещаемый фотоэлектронный катод. Во-вторых, могут быть использованы объекты, «прозрачные» для электронов, обладающих определённой скоростью. Иными словами, при работе на просвет объекты должны быть достаточно тонкими, а электроны достаточно быстрыми, чтобы они проходили сквозь объекты и поступали в систему электронных линз. Кроме того, путём использования отражённых электронных лучей могут быть изучены поверхности массивных объектов (в основном металлов и металлизированных образцов). Такой способ наблюдения аналогичен методам отражательной оптической микроскопии.

По характеру исследования объектов электронные микроскопы разделяют на просвечивающие, отражательные, эмиссионные, растровые, теневые и зеркальные.

Наиболее распространёнными в настоящее время являются электромагнитные микроскопы просвечивающего типа, в которых изображение создаётся электронами, проходящими сквозь объект наблюдения. Он состоит из следующих основных узлов: осветительной системы, камеры объекта, фокусирующей системы и блока регистрации конечного изображения, состоящего из фотокамеры и флуоресцирующего экрана. Все эти узлы соединены друг с другом, образуя так называемую колонну микроскопа, внутри которой поддерживается давление. Осветительная система обычно состоит из трёхэлектродной электронной пушки (катод, фокусирующий электрод, анод) и конденсорной линзы (речь идёт об электронных линзах). Она формирует пучок быстрых электронов нужного сечения и интенсивности и направляет его на исследуемый объект, находящийся в камере объектов. Пучок электронов, прошедший сквозь объект, поступает в фокусирующую (проекционную) систему, состоящую из объективной линзы и одной или нескольких проекционных линз.

Новые статьи

© 2024 sistemalaki.ru
Бизнес-идеи. Бизнес-планы. Франшизы. База знаний. Документы