Простейшие потоки марковские процессы и цепи решение. Пуассоновские потоки событий и непрерывные марковские цепи. Приложения Марковских процессов

Потоки событий Это последовательность событий происходящих одно за другим в определенные интервалы времени. T - средняя величина времени между соседними событиями Если T=const, то события в потоке распределены равномерно. - интенсивность потока, т. е. среднее число событий, происходящих в единицу времени.

Потоки событий Стационарный Количество событий, попадающих на любой произвольный интервал времени не зависит от положения на числовой оси, а зависит только от его ширины Без последействия Для любых двух непересекающихся временных интервалов количество событий, попадающих на один из них, не зависит от того, сколько событий произошло на другом интервале Регулярный Противоположный потоку без последействия (с последействием)

Потоки событий Ординарный В любой момент времени происходит одно и только одно событие, т. е. вероятность появления на бесконечно малом временном интервале двух и более событий пренебрежимо мала по сравнению с вероятностью появления одного события Пуассоновский Нестационарный, ординарный поток без последействия Простейший Стационарный, ординарный поток без последействия, для которого число событий, появляющихся за промежуток времени, распределено по закону Пуассона, а интервалы времени между двумя последовательными событиями характеризуются показательным распределением. Это стационарный пуассоновский поток.

Экономическое применение Современные финансово – банковские операции предполагают погашение задолженности в рассрочку, периодическое поступление доходов от инвестиций. Такого рода последовательность, или ряд платежей, можно назвать потоком платежей. Поток платежей все члены которого – положительные величины, а временные интервалы между платежами одинаковы, называют финансовой рентой. Рентой является последовательность получения процентов по облигациям, платежи по потребительскому кредиту, выплаты в рассрочку страховых премий. Характеристики потока платежей: интервал между двумя соседними платежами, вероятности выплаты платежа, широко применяются в различных финансовых расчетах. Без них невозможно разработать план последовательного погашения задолженности, измерить финансовую эффективность проекта, осуществить сравнение или безубыточное изменение условий контрактов.

Задача Для анализа изменения с течением времени размера текущего фонда банка, занимающегося выдачей долгосрочных ссуд, важно обладать информацией о процессе поступления в банк выплат по займам. Наблюдение за банком в предшествующем периоде показало, что число поступающих в банк выплат за любой промежуток времени не зависит от момента времени с которого начался отсчет промежутка времени, а зависит только от его продолжительности. Ожидаемое число выплат в банк за неделю равно 2. Исследуем, какова вероятность поступления в банк за месяц 7 выплат и найдем вероятность того, что интервал времени между двумя соседними выплатами меньше 2 дней.

Решение По условию задачи поток выплат можно считать простейшим с интенсивностью =2 (за неделю). Следовательно, число выплат, поступивших за промежуток времени =4 недели (1 месяц), распределено по закону Пуассона. Интервалы времени между двумя последовательными выплатами в простейшем потоке имеют показательный закон распределения.

Решение Пусть X() - дискретная случайная величина, представляющая собой число выплат, поступивших за промежуток времени. Она распределена по закону Пуассона. M(X)=D(X)= Тогда - вероятность того, что за промежуток времени в потоке наступят точно m событий равна Следовательно, при интенсивности потока выплат =2 вероятность поступления в банк за месяц (=4) 7 выплат (m=7) равна

Решение Пусть непрерывная случайная величина T - промежуток времени между двумя любыми соседними выплатами (событиями простейшего потока). Она имеет показательный закон распределения. M(T)=1/ , D(T)=1/ 2 Тогда вероятность P(T

Задачи для самостоятельного решения 1. Обычно студент приходит на остановку ровно в 8 часов утра и, сев в первый пришедший автобус, идущий в направлении университета, вовремя прибывает на занятия, которые начинаются ровно в 9 утра. Интервалы движения автобуса составляют в среднем 10 минут, а время в пути автобуса равно 30 минутам. Пусть поток автобусов является простейшим. Найдите вероятность того, что студент все же опоздает на занятия.

Задачи для самостоятельного решения 2. Поток заявок, поступающих в некоторую систему массового обслуживания, достаточно моделируется простейшим. При изучении опытных данных рассматривалось 200 выбранных наудачу промежутков времени длиной в 2 мин. Оказалось, что число тех из них, в которых не было зарегистрировано ни одной заявки, равно 27. Найти математическое ожидание и среднее квадратическое отклонение числа заявок за 1 час.

Основные понятия Под системой S будем понимать всякое целостное множество взаимосвязанных элементов, которое нельзя расчленить на независимые подмножества. Если система S с течением времени t изменяет свои состояния S(t) случайным образом, то говорят, что в системе S протекает случайный процесс. В любой момент времени система пребывает только в одном из состояний, то есть для любого момента времени t найдется единственное состояние Si такое, что S(t) = Si. Множество состояний может быть дискретно (техническое состояние объекта: исправен - неисправен, загружен - находится в простое; численность персонала; количество объектов, ожидающих обслуживания в очереди) или непрерывно (доход, объем производства).

Основные понятия В случае дискретного множества состояний система меняет свои состояния скачком (мгновенно). В случае же непрерывного множества состояний переход системы происходит непрерывно (плавно). В зависимости от времени пребывания системы в каждом состоянии различают процессы с дискретным временем (искусственная числовая сетка времени) и с непрерывным временем (физическое время, переход системы из одного состояния в другое может осуществляться в любой момент времени). Случайный процесс, протекающий в системе S, называется Марковским, если он обладает свойством отсутствия последствия, состоящим в том, что для каждого момента времени t 0 вероятность любого состояния S(t) системы S в будущем (при t>t 0) зависит только от ее состояния S(t 0) в настоящем (при t=t 0) и не зависит от того, как и сколько времени развивался этот процесс в прошлом (при t>t 0).

А. А. Марков (1856 - 1922) Андрей Андреевич Марков - старший - выдающийся русский математик, разработавший основы теории случайных процессов без последействия, которые в математике называют Марковскими процессами в его честь. А. А. Марков - старший известен также как давший вероятностное обоснование метода наименьших квадратов (МНК), приведший одно из доказательств предельной теоремы теории вероятностей и многое другое.

Виды Марковских процессов Дискретные состояния и дискретное время (цепь Маркова) Непрерывные состояния и дискретное время (Марковские последовательности) Дискретные состояния и непрерывное время (непрерывная Марковская цепь) Непрерывные состояния и непрерывное время. На практике большинство задач по Марковским процессам описываются с помощью Марковских цепей с дискретным или непрерывным временем.

Марковские цепи Цепью Маркова называют такую последовательность случайных событий, в которой вероятность каждого события зависит только от состояния, в котором процесс находится в текущий момент и не зависит от более ранних состояний.

Задание Марковской цепи множеством состояний S = {s 1, …, sn}, событием является переход из одного состояния в другое в результате случайного испытания вектором начальных вероятностей (начальным распределением) p(0) = {p(0)(1), …, p(0)(n)}, определяющим вероятности p(0)(i) того, что в начальный момент времени t = 0 процесс находился в состоянии si матрицей переходных вероятностей P = {pij}, характеризующей вероятность перехода процесса с текущим состоянием si в следующее состояние sj, при этом сумма вероятностей переходов из одного состояния равна 1

Виды Марковских цепей Марковская цепь называется однородной, если переходные вероятности от времени не зависят, то есть от шага k к шагу (k+1) не меняются. Разложимые Марковские цепи содержат невозвратные состояния, называемые поглощающими. Из поглощающего состояния нельзя перейти ни в какое другое. На графе поглощающему состоянию соответствует вершина, из которой не выходит ни одна дуга. Эргодические Марковские цепи описываются сильно связанным графом. В такой системе возможен переход из любого состояния в любое состояние за конечное число шагов.

Цель моделирования - определить вероятность системы находится в j-ом состоянии после k-го шага. Обозначим эту вероятность - однородная Марковская цепь - неоднородная Марковская цепь

Задача № 1 Некоторая совокупность рабочих семей поделена на три группы: 1 – семьи, не имеющие автомашины и не намеревающиеся ее приобрести; 2 – семьи, не имеющие автомашины, но собирающиеся ее приобрести, и, наконец, 3 – семьи, имеющие автомашину. Статистические обследования дали возможность оценить вероятность перехода семей из одной группы на протяжении года в другую. При этом матрица перехода оказалась такой:

Задача № 1 Найти: а)вероятность того, что семья, не имевшая машины и не собиравшаяся ее приобрести, будет находиться в той же ситуации через 2 года; б) вероятность того, что семья, не имевшая автомашины и намеревающаяся ее приобрести, будет иметь автомашину через 2 года. (выполнить решение пункта (б) данной задачи самостоятельно)

Решение задачи № 1 а) Дано: т. е. вектор начальных вероятностей p(0)=(1, 0, 0) (сейчас система в состоянии 1) Найти: (через 2 года в состоянии 1) Найдем вероятности системы оказаться в каждом из состояний через 1 год (умножение вектора начальных вероятностей на 1 столбец матрицы переходных вероятностей) (умножение вектора начальных вероятностей на 2 столбец матрицы переходных вероятностей) (умножение вектора начальных вероятностей на 3 столбец матрицы переходных вероятностей)

Решение задачи № 1 Получим вектор вероятностей через 1 год В нашем случае это 1 -ая строка матрицы переходных вероятностей Найдем вероятности системы оказаться в 1 состоянии через 2 года (умножение вектора вероятностей через 1 год, т. е. 1 -ой строки матрицы переходных вероятностей на 1 -ый столбец матрицы переходных вероятностей)

Решение задачи № 1 Вычисления: Ответ: вероятность того, что семья, не имевшая машины и не собиравшаяся ее приобрести, будет находиться в той же ситуации через 2 года равна 0, 64

Задача № 2 Предположим, что некая фирма осуществляет доставку оборудования по Москве: в северный округ (обозначим А), южный (В) и центральный (С). Фирма имеет группу курьеров, которая обслуживает эти районы. Понятно, что для осуществления следующей доставки курьер едет в тот район, который на данный момент ему ближе. Статистически было определено следующее: после осуществления доставки в А следующая доставка в 30 случаях осуществляется в А, в 30 случаях – в В и в 40 случаях – в С; после осуществления доставки в В следующая доставка в 40 случаях осуществляется в А, в 40 случаях – в В и в 20 случаях – в С; после осуществления доставки в С следующая доставка в 50 случаях осуществляется в А, в 30 случаях – в В и в 20 случаях – в С. Таким образом, район следующей доставки определяется только предыдущей доставкой.

Задача № 2 Если курьер стартует из центрального округа, какова вероятность того, что осуществив две доставки, он будет в южном округе? Выполните решение задачи самостоятельно: Составьте матрицу переходных вероятностей Нарисуйте граф данного процесса Вычислите искомую вероятность

Предельные вероятности Для эргодических цепей при достаточно большом времени функционирования (t стремится к бесконечности) наступает стационарный режим, при котором вероятности состояний системы не зависят от времени и не зависят от распределения вероятностей в начальный момент времени. Такие вероятности называются предельными (или финальными, стационарными) вероятностями состояний, они показывает среднее относительное время пребывания системы в определенном состоянии. Например, если предельная вероятность i-го состояния pi=0. 5, то это означает, что в среднем половину времени система находится в i-ом состоянии.

Предельные вероятности Пусть xi – предельные вероятности (i=1. . n), где n – число состояний. Тогда xi являются единственным решением системы линейных уравнений. В данную систему входят уравнения:

Пример Матрица переходных вероятностей (число состояний n=2) и графическое изображение Марковского процесса: Предельные вероятности x 1 и x 2 можно найти, решив систему

Задача № 3 Две машины А и В сдаются в аренду по одной и той же цене. Эти машины имеют следующие матрицы переходных вероятностей: где 1 – состояние, когда машина работает хорошо; 2 – состояние, когда машина требует регулировки. Определить вероятности для обеих машин. Какую машину стоит арендовать?

Задача № 4 Посетитель банка с намерением получить кредит проходит ряд проверок (состояний): е 1 – оформление документов; е 2 – кредитная история; е 3 – возвратность; е 4 – платежеспособность. По результатам проверки возможны два исхода: отказ в выдаче кредита (е 6) и получение кредита (е 5).

Задача № 4 Требуется: a) описать данный процесс как Марковскую цепь и построить переходную матрицу (выполнить самостоятельно); б) найти среднее время получения положительного и отрицательного результата (решение в Excel).

При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания, а системы - систем массового обслуживания (СМО). Примерами таких систем являются телефонные системы, ремонтные мастерские, вычислительные комплексы, билетные кассы, магазины, парикмахерские и т.п.
Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые будем называть каналами обслуживания. Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на одноканальные и многоканальные.
Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований). Обслуживание заявок, вообще говоря, также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО необслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.
Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок.

В качестве показателей эффективности СМО используются: среднее (здесь и в дальнейшем средние величины понимаются как математические ожидания соответствующих случайных величин) число заявок, обслуживаемых в единицу времени; среднее число заявок в очереди; среднее время ожидания обслуживания; вероятность отказа в обслуживании без ожидания; вероятность того, что число заявок в очереди превысит определенное значение и т.п.

СМО делят на два основных типа (класса) : СМО с отказами и href="cmo_length.php">СМО с ожиданием (очередью). В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО необслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.
СМО с ожиданием подразделяются на разные виды в зависимости от того, как организована очередь: с ограниченной или неограниченной длиной очереди, с ограниченным временем ожидания и т.п.
Процесс работы СМО представляет собой случайный процесс.
Под случайным (вероятностным или стохастическим) процессом понимается процесс изменения во времени состояния какой-либо системы в соответствии с вероятностными закономерностями.
Процесс называется процессом с дискретными состояниями, если его возможные состояния S 1 , S 2 , S 3 … можно заранее перечислить, а переход системы из состояния в состояние происходит мгновенно (скачком). Процесс называется процессом с непрерывным временем, если моменты возможных переходов системы из состояния в состояние не фиксированы заранее, а случайны.
Процесс работы СМО представляет собой случайный процесс c дискретными состояниями и непрерывным временем. Это означает, что состояние СМО меняется скачком в случайные моменты появления каких-то событий (например, прихода новой заявки, окончания обслуживания и т.п.).
Математический анализ работы СМО существенно упрощается, если процесс этой работы - марковский. Случайный процесс называется марковским или случайным процессом без последствия, если для любого момента времени t 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t 0 и не зависят от того, когда и как система пришла в это состояние.

Пример марковского процесса: система S - счетчик в такси. Состояние системы в момент t характеризуется числом километров (десятых долей километров), пройденных автомобилем до данного момента. Пусть в момент t 0 счетчик показывает S 0 . Вероятность того, что в момент t > t 0 счетчик покажет то или иное число километров (точнее, соответствующее число рублей) S 1 , зависит от S 0 , но не зависит от того, в какие моменты времени изменялись показания счетчика до момента t 0 .
Многие процессы можно приближенно считать марковскими. Например, процесс игры в шахматы; система S - группа шахматных фигур. Состояние системы характеризуется числом фигур противника, сохранившихся на доске в момент t 0 . Вероятность того, что в момент t > t 0 материальный перевес будет на стороне одного из противников, зависят в первую очередь от того, в каком состоянии находится система в данный момент t 0 , а не того, когда и в какой последовательности исчезли фигуры с доски до момента t 0 .
В ряде случаев предысторией рассматриваемых процессов можно просто пренебречь и применять для их изучения марковские модели.
При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой - так называемым графом состоянии. Обычно состояния системы изображаются прямоугольниками (кружками), а возможные переходы из состояния в состояние - стрелками (ориентированными дугами), соединяющими состояния.
Задача 1 . Построить граф состояний следующего случайного процесса: устройство S состоит из двух узлов, каждый из которых в случайный момент времени может выйти из строя, после чего мгновенно начинается ремонт узла, продолжающийся заранее неизвестное случайное время.

Решение. Возможные состояния системы: S 0 - оба узла исправны; S 1 - первый узел ремонтируется, второй исправен; S 2 - второй узел ремонтируется, первый исправен; S 3 - оба узла ремонтируются. Граф системы приведен на рис.1.
Рис. 1
Стрелка, направленная, например, из S 0 в S 1 означает переход системы в момент отказа первого узла, из S 1 в S 0 - переход в момент окончанияремонта этого узла.
На графе отсутствуют стрелки из S 0 , в S 3 и из S 1 в S 2 . Это объясняется тем, что выходы узлов из строя предполагаются независимыми друг от друга и, например, вероятностью одновременного выхода из строя двух узлов (переход из S 0 в S 3) или одновременного окончания ремонтов двух узлов (переход из S 3 в S 0) можно пренебречь.

Поток событий

Для математического описания марковского случайного процесса с дискретными состояниями и непрерывным временем, протекающего в СМО, познакомимся с одним из важных понятий теории вероятностей - понятием потока событий.
Под потоком событий понимается последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени (например, поток вызовов на телефонной станции, поток отказов ЭВМ, поток покупателей и т.п.).
Поток характеризуется интенсивностью l - частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.
Поток событий называется регулярным, если события следуют одно за другим через определенные равные промежутки времени. Например, поток изделий на конвейере сборочного цеха (с постоянной скоростью движения) является регулярным.
Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная: l(t)= l. Например, поток автомобилей на городском проспекте не является стационарным в течение суток, но этот поток можно считать стационарным в течение суток, скажем, в часы пик. Обращаем внимание на то, что в последнем случае фактическое число проходящих автомобилей в единицу времени (например, в каждую минуту) может заметно отличаться друг от друга, но среднее их число будет постоянно и не будет зависеть от времени.
Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени t 1 и t 2 - число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие. Например, поток пассажиров, входящих в метро, практически не имеет последействия. А, скажем, поток покупателей, отходящих с покупками от прилавка, уже имеет последействие (хотя бы потому, что интервал времени между отдельными покупателями не может быть меньше, чем минимальное время обслуживания каждого из них).
Поток событий называется ординарным, если вероятность попадания на малый (элементарный) участок времени Dt двух и более событий пренебрежимо мала по сравнению с вероятностью попадания одного события. Другими словами, поток событий ординарен, если события появляются в нем поодиночке, а не группами. Например, поток поемов, подходящих к станции, ординарен, а поток вагонов не ординарен.
Поток событий называется простейшим (или стационарным пуассоновским), если он одновременно стационарен, ординарен и не имеет последействия. Название "простейший" объясняется тем, что СМО с простейшими потоками имеет наиболее простое математическое описание. Заметим, что регулярный поток не является "простейшим", так как он обладает последействием: моменты появления событий в таком потоке жестко зафиксированы.
Простейший поток в качестве предельного возникает в теории случайных процессов столь же естественно, как в теории вероятностей нормальное распределение получается в качестве предельного для суммы случайных величин: при наложении (суперпозиции) достаточно большого числа n независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивностям l 1 (i=1,2, ..., п) получается поток, близкий к простейшему с интенсивностью l, равной сумме интенсивностей входящих потоков, т.е.
Рассмотрим на оси времени Ot (рис. 2) простейший поток событий как неограниченную последовательность случайных точек.
Рис. 2
Можно показать, что для простейшего потока число т событий (точек), попадающих на произвольный участок времени t, распределено по закону Пуассона , (1)
для которого математическое ожидание случайной величины равно ее дисперсии: a= s 2 = l t.
В частности, вероятность того, что за время t не произойдет ни одного события (m=0), равна (2)
Найдем распределение интервала времени Т между произвольными двумя соседними событиями простейшего потока.
В соответствии с (15.2) вероятность того, что на участке времени длиной t не появится ни одного из последующих событий, равна (3)
а вероятность противоположного события, т.е. функция распределения случайной величины Т, есть (4)
Плотность вероятности случайной величины есть производная ее функции распределения (рис. 3), т.е. (5)
Рис. 3
Распределение, задаваемое плотностью вероятности (5) или функцией распределения (4), называется показательным (или экспоненциальным). Таким образом, интервал времени между двумя соседними произвольными событиями имеет показательное распределение, для которого математическое ожидание равно среднему квадратическому отклонению случайной величины (6)
и обратно по величине интенсивности потока l.
Важнейшее свойство показательного распределения (присущее только показательному распределению) состоит в следующем: если промежуток времени, распределенный по показательному закону, уже длился некоторое время t, то это никак не влияет на закон распределения оставшейся части промежутка (T-t): он будет таким же, как и закон распределения всего промежутка Т.
Другими словами, для интервала времени Т между двумя последовательными соседними событиями потока, имеющего показательное распределение, любые сведения о том, сколько времени протекал этот интервал, не влияют на закон распределения оставшейся части. Это свойство показательного закона представляет собой, в сущности, другую формулировку для "отсутствия последействия" - основного свойства простейшего потока.
Для простейшего потока с интенсивностью l вероятность попадания на элементарный (малый) отрезок времени Dt хотя бы одного события потока равна согласно (4)
(7)
(Заметим, что эта приближенная формула, получаемая заменой функции e - l Dt лишь двумя первыми членами ее разложения в ряд по степеням Dt, тем точнее, чем меньше Dt).

Вычислительные технологии

Том 13, Специальный выпуск 5, 2008

Исследование полумарковского потока событий

А. А. Назаров, С. В. Лопухова Томский государственный университет, Россия e-mail: nazarov@f pmk. tsu. ru, lopuchovasv@mail. ru

И.Р. Гарайшина

Филиал Кемеровского государственного университета в г. Анжеро-Судженске, Россия e-mail: [email protected]

In the submitted work, the semimarkovian process is considered. Limiting model is considered. Results of analytical treatment of limiting model are compared with results, obtained by the asymptotical method.

Введение

Существует проблема расширения класса математических моделей потоков однородных событий. Зачастую классические модели случайных потоков событий не могут быть адекватны реальным информационным, телекоммуникационным потокам. Моделей пуассоповского и простейшего потоков часто бывает недостаточно для более правдоподобного, приближенного к реальности описания входящих потоков для систем массового обслуживания. Несмотря на то что существуют потоки фазового типа и модулированные пуассоновские потоки, которые более адекватны реальным ситуациям, большой интерес представляют модели полумарковского потока, частным случаем которых являются потоки марковского восстановления и все вышеперечисленные потоки. Методы исследования таких моделей достаточно сложны и приводят к значительным математическим проблемам. Поэтому наряду с задачей расширения классов потоков существует проблема развития методов их исследования.

1. Математическая модель

Случайным потоком однородных событий (потоком) будем называть упорядоченную последовательность

t\ < ¿2 < ■ ■ ■

случайных величин tm - моментов наступления событий в потоке.

Пусть задана полумарковская матрица A(x) с элемента ми Aklk2 (x), Матрн ца P = lim A(x) является стохастической, поэтому при заданном начальном распределении

она определяет некоторую цепь Маркова k (tm) с дискретным временем, которую будем называть вложенной в полумарковский поток цепью Маркова,

© Институт вычислительных технологий Сибирского отделения Российской академии наук, 2008.

А. А. Назаров, С. В. Лопухова, И. Р. Гарайшина

Случайный поток однородных событий будем называть полумарковским, если вероятностный закон формирования последовательности (1) определяется начальным распределением и равенствами

Ак1к2 (х) = Р {к(Ьт+1) = к2, Ьт+1 - Ьт < х ^^т) = к\ }

при всех т > 1.

Обозначим п(Ь) число событий полу марко веко го потока, наетуп ивших за время Ь па интервале .

Задачей исследования данной работы является установление распределения вероятностей Р(п, Ь) = Р{п(Ь) = п} при стационарном функционировании эргодичеекой цепи Маркова к (1т). Очевидно, процесс п(Ь) - немарковский, поэтому определим еще два случайных процесса: г(Ь) - длину интервала от момента времени Ь до момента наступления очередного события в рассматриваемом потоке, к(Ь) - непрерывный слева процесс с непрерывным временем, значение которого на интервале (Ьт,Ьт+1] постоянны и определяются равенствами к (Ь) = к (Ьт+1). В силу сделанных определений случайный процесс {к(Ь), п(Ь), г(Ь)} является трехмерным марковским процессом с непрерывным временем.

Заметим, что случайный процесс к(Ь) не является полумарковским в классическом определении , так как полумарковский процесс Б(Ь) непрерывен справа и, как указано в , для его переходных вероятностей не существует дифференциальных эволюционных уравнений Колмогорова, в то время как предложенный выше процесс {к(Ь), п(Ь), г(Ь)} - марковский, поэтому для его распределения вероятностей

Р (к, п, г,Ь) = Р {к(Ь) = к, п(Ь) = п, г(Ь) < г} (2)

нетрудно составить систему дифференциальных уравнений Колмогорова дР (к,п,г,Ь) дР (к,п,г,Ь) дР (к,п, 0,Ь) ^ дР (и,п - 1,0,Ь)

^ дГ (и,1Ь - 1, 0,Ь) А (\ 2-^-

дЬ дг дг ^ дг

Обозначим

Н(к, и, г, г) = ^ е"иПР(к,п,г,Ь),

где ] = ¡~ ~~ мнимая единица. Для этих функций из системы дифференциальных уравнений Колмогорова можно записать

дН (к,и,г,Ь) дН (к,и,г,Ь) дН (к, и, 0,Ь) ,и ^ дН (и, и, 0,Ь)

дЬ дг дг ^ дг

Обозначим Н (и,г,Ь) = {Н (1,и,г,Ь) ,Н (2,и,г,Ь),...} строку вектор-функции, тогда систему уравнений (3) перепишем в матричном виде

дН{и,г,г) _ дН{и,г,г) дН{и,0,г) Мц,г ч п т

дг дг + дг 1 [) "" [ }

решение которой удовлетворяет начальному условию H(u,z, 0) = R(z), где I - единичная матрица, а стационарное распределение R(z) двумерного марковского процесса {k(t), z(t)} является решением задачи Коши

<Ш = <Ш(1-Мг)),

и определяется равенством R{z) = seiт / (Р - A(x))dx, где aei = Здесь г - вектор-

строка стационарного распределения вероятностей значений вложенной цепи Маркова

k(tm); E - единичный вектор-столбец и матрица A = (P - A(x))dx.

2. Допредельная модель

Пусть имеем дифференциальное уравнение (4), решение H (u,z,t) которого удовлетворяет начальному условию H(u, z, 0) = R(z). Тогда преобразование Фурье - Стилтьесса

ф>(u,a,t) = / ejaz dz H (u, z, t) вектор-функ ции H (u,z,t) удовлетворяет уравнению

дф(и,а,Ь) . . дН (и, 0,Ь) , .*. . гЛ, .

т = ~заф{щ а, +-(е?иА*{а) - /) (5)

и начальному условию

ф(и,а, 0) = R*(a) = ^ ё>а2

где А*(а) = J е>а"2dA(z). Решение уравнения (5) имеет вид о

ф(и, а,1) = е~заЬ [ II*{а) + I (¿>иА*{а) - I) dт ] . (6)

Устремив Ь в бесконечность в выражении (6), получим преобразование Фурье по т

дН (и, 0,т) ^ ^ " л

от вектор-функции---. Выполнив обратное преобразование Фурье, определим,

I e-j*A*{aj) 1 da.

А. А. Назаров, С. В. Лопухова, И. Р. Рарайшшиа

Теперь равенство (6) можно записать в виде

ф(ща,г) = е-аЬ Я*(а) +

+ - / е]ат I е~зутК*(у) (/ - е>иА*(у)) 1 Ау (е"иА*(а) - /) <*г). (7)

Зная, что Н(и, ж,г) = Н(и,г) = ф(и, 0,1), получим выражение для вектор-функции Н (и,г):

Тогда распределение вероятностей Р(п, г) числа событий, наступивших за время г, явля-

ции Н(и,Ь) = МеЭип(Ь = Н(и,Ь)Е, оно имеет вид

1 С а1 Г 1 - е-™Ь

Р(п,1) = - е~зипНШ)Е(1и = - / -^-5

I - А* (у) А*(у)п-1Ейу, (8)

I - А* (у) Е<1у

Заключение

Выполняя асимптотические исследования полу марко веко го потока событий, аналогичные исследованию потоков марковского восстановления , получим, что асимптотику третьего порядка для характеристической функции можно записать в виде

МеГап(1) = ^«(ге^+^ае^+^аез*)

где коэффициенты 831, а2, аз3 для полумарковского потока определяются аналогично тому, как это сделано в работах . Полученные равенства (8) определяют распределение вероятностей Р(п,г) числа событий, наступивших в стационарном полумарковском потоке, заданном полумарковской матрицей А(х) и ее преобразованием А*(х) Фурье - Стилтьесса, Численная реализация формул (8) позволяет находить численные значения вероятностей Р(п, г) для достаточно широкого клаееа матриц А* (х) и значений г. Но возможности численной реализации ограничены вычислительными ресурсами. Для достаточно больших значений г естественно применить метод асимптотического анализа полумарковского потока аналогично тому, как это выполнено для потока марковского восстановления в работе и просеянного потока марковского восстановления в работе . Наличие численного алгоритма (8) позволяет определить область применения асимптотических результатов. Для рассмотренных потоков с тремя состояниями вложенной цепи Маркова расстояние Колмогорова - Смирнова между распределениями,

полученными асимптотически и по формулам (8), не превосходит 2-3 % для определенных значений t = Т, это позволяет утверждать, что при t > Т эффективно применение асимптотических результатов, а при t < Т целесообразно использовать формулы (8), полученные в данной работе.

Список литературы

Королюк B.C. Стохастические модели систем. Киев: Наук, думка, 1989. 208 с.

Назаров A.A., Лопухова C.B. Исследование потока марковского восстановления асимптотическим методом второго порядка // Матер. Междунар. науч. конф. "Математические методы повышения эффективности функционирования телекоммуникационных сетей". Гродно, 2007. С. 170-174.

Лопухова C.B. Исследование полумарковского потока асимптотическим методом третьего порядка // Матер. VI Междунар. научно-практ. конф. "Информационные технологии и математическое моделирование". Томск: Изд-во Том. ун-та, 2007. Ч. 2. С. 30-34.

На практике мы почти никогда не имеем дела с марковскими процессами в чистом виде: реальные процессы почти всегда обладают тем или другим последействием. Для марковского процесса время пребывания системы подряд в каком-либо состоянии распределено по показательному закону; на самом деле это далеко не всегда бывает так. Например, если поток событий, переводящий систему из состояния в состояние есть поток отказов какого-то узла, то более естественно предположить, что оставшееся время безотказной работы узла зависит от того, сколько времени узел уже работал. При этом время пребывания узла в рабочем состоянии представляет собой случайную величину, распределенную не по показательному, а по какому-то иному закону. Возникает вопрос о том, можно ли приближенно заменять непуассоновские потоки - пуассоновскими и к каким ошибкам в предельных вероятностях состояний может привести подобная замена. Для этого необходимо уметь хотя бы приближенно исследовать случайные процессы, протекающие в системах с последействием.

Рассмотрим некоторую физическую систему S, в которой протекает случайный процесс, направляемый какими-то непуассоновскими потоками событий. Если мы попробуем для этого процесса написать уравнения, выражающие вероятности состояний как функции времени, мы увидим, что в общем случае это нам не удастся. Действительно, для марковской системы мы вычисляли вероятность того, что в момент система будет в состоянии учитывая только то, в каком состоянии система была в момент t, и не учитывая, сколько времени она была в этом состоянии. Для немарковской системы этот прием уже непригоден: вычисляя вероятность перехода из одного состояния в другое за время мы должны будем учитывать, сколько времени система уже провела в данном состоянии. Это приводит, вместо обыкновенных дифференциальных уравнений, к уравнениям с частными производными, то есть к гораздо более сложному математическому аппарату, с помощью которого только в редких случаях можно получить нужные результаты.

Возникает вопрос: а нельзя ли свести искусственно (хотя бы приближенно) немарковский процесс к марковскому?

Оказывается, в некоторых случаях это возможно: а именно, если число состояний системы не очень велико, а отличающиеся от простейших потоки событий, участвующие в задаче, представляют собой (точно или приближенно) потоки Эрланга. Тогда, вводя в схему возможных состояний системы некоторые фиктивные «псевдосостояния», удается свести немарковский процесс к марковскому и описать его с помощью обыкновенных дифференциальных уравнений, которые при переходят в алгебраические уравнения для предельных вероятностей состояний.

Поясним идею метода «псевдосостояний» на конкретном примере.

Пример 1. Рассматривается система S - Техническое устройство, которое может выходить из строя под влиянием простейшего потока неисправностей с интенсивностью к. Отказавшее устройство немедленно начинает восстанавливаться. Время восстановления (ремонта) Т распределено не по показательному закону (как надо было бы для того, чтобы процесс был марковским), а по закону Эрланга порядка:

Требуется свести данный немарковский процесс к марковскому и найти для него предельные вероятности состояний.

Решение. Случайная величина Т - время восстановления - распределена по закону Эрланга и, значит, представляет собой сумму трех случайных величин распределенных по показательному закону (см. § 5 гл. 4) с параметром

Истинных состояний системы всего два:

Устройство исправно;

Устройство восстанавливается.

Граф этих состояний показан на (он относится к циклической схеме).

Однако в виду того, что переход по стрелке происходит под влиянием не простейшего, а эрланговского потока событий, процесс, происходящий в системе, марковским не является, и для него мы не можем написать ни дифференциальных, ни алгебраических уравнений.

Чтобы искусственно свести это процесс к марковскому, введем в цепочку состояний, вместо одного состояния три последовательных «псевдосостояния».

Ремонт начинается;

Ремонт продолжается;

Ремонт заканчивается, т. е. разделим ремонт на три этапа или «фазы», причем время пребывания системы в каждой из фаз будем считать распределенным по показательному закону (10.2). Граф состояний будет иметь вид, показанный на рис. 4.48, где роль одного состояния будут играть три псевдосостояния Процесс, протекающий в такой системе, уже будет марковским.

Обозначим - предельные вероятности пребывания системы в псевдосостояниях тогда

Обозначая

можем сразу написать (как для обычной циклической схемы) предельные вероятности состояний:

Заметим, что величина представляет собой не что иное, как среднее время восстановления (ремонта) - оно равно сумме средних времен пребывания системы в каждой фазе ремонта.

Переходя в формулах для от средних времен к интенсивностям потоков, по формулам получим:

Таким образом, получен вывод: для нашего элементарного примера вероятность пребывания в каждом из двух состояний, как и для марковского цикла, равна относительному среднему времени пребывания подряд в каждом из состояний.

Следующий пример будет несколько сложнее.

Пример 2. Техническое устройство S состоит из двух одинаковых узлов, каждый из которых может выходить из строя (отказывать) под влиянием простейшего потока неисправностей с интенсивностью 1. Отказавший узел немедленно начинает ремонтироваться. Время ремонта Т распределено по закону Эрланга второго порядка:

Требуется найти предельные вероятности состояний системы.

Решение. Истинных состояний системы три (нумеруем их по числу отказавших узлов).

Оба узла работают;

Один узел работает, другой ремонтируется;

Оба узла ремонтируются.

Разделим условно ремонт на две фазы: ремонт начинается и ремонт заканчивается.

Один узел работает, другой начинает ремонтироваться;

Один узел работает, другой кончает ремонтироваться;

Оба узла начинают рамонтироваться;

Один узел начинает ремонтироваться, а другой кончает;

Оба узла кончают ремонтироваться.

Граф состояний системы с псевдосостояниями показан на рис. 4.49. На стрелках, ведущих из и из написано а не потому что перейти в следующую фазу ремонта (окончание ремонта) может любой из двух узлов.

Уравнения для предельных вероятностей состояний имеют вид:

Из третьего, пятого и шестого уравнений (10.4) имеем:

что дает возможность уменьшить число неизвестных: подставляя (10.5) в оставшиеся три уравнения (10.4), получим:

Из этих трех уравнений с тремя неизвестными можно по произволу отбросить любое, например, последнее, и добавить нормировочное условие:

или, с учетом (10.5),

Цель лекции: освоение понятий поток событий, простейший поток событий, Марковский процесс.

1.Поток событий. Свойства потоков событий. Простейший поток событий. Формула Пуассона.

2. Процесс обслуживания как Марковский процесс.

3. Одноканальная СМО с ожиданием.

Потоком событий называется последовательность однородных событий, следующих одно за другим в случайные моменты времени.

Примерами могут быть:

Поток вызовов на телефонной станции;

Поток сбоев компьютера;

Поток выстрелов, направляемых на цель, и т.д.

Регулярным потоком называется поток, в котором события следуют одно за другим через одинаковые промежутки времени (детерминированная последовательность событий).

Такой поток событий редко встречается на практике. В телекоммуникационных системах чаще встречаются потоки, для которых и моменты наступления событий и промежутки времени между ними являются случайными.

Рассмотрим такие свойства потоков событий, как стационарность, ординарность и отсутствие последействия.

Поток стационарен, если вероятность появления какого-то числа событий на интервале времени τ зависит только от длины этого интервала и не зависит от его расположения на оси времени. Для стационарного потока среднее число событий в единицу времени постоянно.

Ординарным потоком называется поток, для которого вероятность попадания на данный малый отрезок времени двух и более требований пренебрежительно мала по сравнению с вероятностью попадания одного требования.

В системах телекоммуникаций поток принято считать ординарным.

Потокбез последствия характеризуется тем, что для двух непересекающихся интервалов времени

вероятность появления числа событий на втором интервале не зависит от числа появления событий на первом интервале.

Параметром потока называется предел

где - вероятность того, что на интервале появятся заявки.

Интенсивностью потока μ называется среднее число событий в единицу времени.

Для стационарного потока его параметр не зависит от времени .

Для стационарного и ординарного потока λ=μ.

Простейшим или пуассоновским потоком называется стационарный, ординарный поток без последействия.

Простейший поток подчиняется пуассоновскому закону распределения

где - интенсивность потока;

Количество событий, появляющихся за время .

Простейший поток можно задать функцией распределения промежутка между соседними вызовами

F(t)=P(zt),

P(z>t) равносильна вероятности того, что в промежутке длиной t не поступит не одного вызова.



F(t)=P(z>t)=1- (t)=1-

Данный закон распределения случайной величины называется показательным.

Свойства и характеристики простейшего потока:

а) для простейшего потока математическое ожидание и среднеквадратическое отклонение величины промежутка z равны между собой MZ= σz=1/λ;

б) Математическое ожидание и дисперсия числа вызовов i за промежуток времени t равны между собой Mi=Di= λt.

Совпадение этих величин используют на практике при проверке реального потока для соответствия его простейшему.

Популярные статьи

© 2024 sistemalaki.ru
Бизнес-идеи. Бизнес-планы. Франшизы. База знаний. Документы