Промышленность строительных материалов. Производство строительных материалов и утилизация промышленных отходов Строительные материалы из побочных продуктов химической промышленности

PAGE 3

Лекция 2 по дисциплине «Строительные материалы» для 1 курса (бакалавриат)

Тема. Сырье для производства строительных материалов. Природные каменные материалы

1. Природная сырьевая база для производства строительных матери а лов.

Сырьем для изготовления всех неорганических строительных материалов (каменных и металлов) являются горные породы.

Строительные материалы из горных пород могут быть получены двумя путями: механической обработкой и химической переработкой (чаще всего обжигом).

Природными каменными материалами в строительстве называют камни, полученные механической обработкой горных пород – дроблением, распиливанием, раскалыванием, фактурной обработкой поверхности. Природные каменные материалы сохраняют структуру горной породы. Некоторые горные породы, разрушенные самой природой, могут представлять собой готовый строительный материал (песок, гравий и др.).

Камнелитные изделия получают плавлением камня с последующей разливкой расплава в формы. Технология каменного литья называется петрургией (слово «петр» означает камень). Петрургию применяют для получения непористых каменных изделий или изделий сложной формы.

Химической переработкой горных пород получают такие распространенные материалы (вяжущие), как известь, цемент, строительный гипс и др. Одна из наиболее доступных для добычи горных пород – глина – с древнейших времен подвергается химической переработке – обжигу. Из глины, как известно, получают кирпич и керамические, в том числе строительные, изделия.

Металлы получают также из горных пород, называемых рудами. Руда – это горная порода, содержащая значительный процент металла. При этом должно быть технологически приемлемо и экономически целесообразно извлекать металл из такой породы. Например, руды, содержащие оксиды железа в свободном состоянии, главное сырье для металлургии. А широко распространенные породы, называемые железомагнезиальные силикаты не применяются для извлечения железа или магния. Металла в них небольшой процент, и извлечь его из породы трудно и дорого.

Основное сырье для органических материалов – нефть и каменный уголь – можно также отнести к горным породам. Из нефти и каменного угля получают битумы и дегти, используемые для кровельных материалов и дорожного строительства. Продукты переработки нефти и каменного угля применяются для получения строительных пластмасс

Древнейший строительный материал органического происхождения – древесина. Механической обработкой древесины получают материалы, сохраняющие ее структуру. Это не только хорошо известные бревна и доски, но и, например, декоративно-отделочный материал – шпон из ценных пород древесины.

2.Вторичные сырьевые ресурсы в производстве строительных матери а лов.

Наряду с природным сырьем в производстве строительных материалов применяют так называемые техногенные отходы. Промышленность выпускает готовой продукции значительно меньше, чем потребляет сырья. Например, для производства 1 т чугуна расходуется 1,5… 2 т сырья. Следовательно, 0,5… 1 т – это отходы производства.

Среди техногенных отходов могут быть газообразные, жидкие и твердые продукты. Многие из них загрязняют воздух и воду. Известно, что улавливанием и нейтрализацией вредных отходов стали заниматься только в связи с бурным развитием промышленности в конце 19 – начале 20 века. Полностью эта проблема до сих пор не решена.

Техногенные отходы, в том числе полученные при очистке промышленных стоков, газовых и пылевых выбросов, могут быть снова использованы как сырье в том же или другом производстве. Из отраслей, потребляющих промышленные отходы, наиболее емкой является промышленность строительных материалов. Установлено, что использование промышленных отходов позволяет покрыть до 40% потребности строительства в сырьевых ресурсах. Применение промышленных отходов позволяет на 10…30% снизить затраты на изготовление строительных материалов по сравнению с производством их из природного сырья. Кроме того, из промышленных отходов можно создавать новые строительные материалы с высокими технико-экономическими показателями.

Отходы удобно классифицировать по отраслям промышленности.

Шлаки черной металлургии . Среди них наибольшее значение для строительной индустрии имеют доменные шлаки – побочный продукт при выплавке чугуна в доменных печах. В домне, как известно, руда расплавляется. Расплав разделяется на два слоя – металл внизу и шлак сверху. Таким образом, шлак представляет собой плавленый камень. В металлургических районах отвалы затвердевшего шлака занимают много полезной земли (выход шлака около 0,5 тонн на тонну чугуна). Строительная индустрия потребляет как монолитный шлак после дробления в щебень, так и специально подготовленный гранулированный шлак. Простейший способ грануляции – сухой: тонкая струя расплавленного шлака льется с большой высоты, разделяясь при этом на капли, которые, застывая, и образуют гранулы шлака. Существуют также мокрый и полусухой способы грануляции. Цель грануляции – получить незакристаллизованный (аморфный, стекловидный) камень, химически более активный, чем закристаллизовавшийся в отвалах шлак. Гранулы растирают в порошок и применяют в производстве цемента. Щебень, полученный дроблением отвального шлака, применяют как заполнитель для бетона. Для легкого бетона изготовляют шлаковую пемзу – поризованный шлак. Сущность изготовления шлаковой пемзы состоит в том, что расплавленный шлак с температурой около 1300ºС обрабатывается холодной водой. Благодаря мгновенному испарению воды и связанному с этим быстрому остыванию шлака вязкость последнего возрастает. Пузырьки пара не могут преодолеть пластически вязкое состояние расплава, застревают в нем и вспучивают его. В результате образуется легкий пористый материал, напоминающий природную пемзу.

Шламы – общее название осадков суспензий, получаемых в металлургических и химических производствах при жидкостной обработке различных материалов. Например, из нефелина при получении из него глинозема (Al 2 O 3 ) получается шлам, содержащий – белит Ca 2 SiO 4 . Белит входит в состав портландцемента, поэтому белитовый шлам используют в производстве вяжущих. при вымывании из глины алюминия с помощью кислотной обработки получается шлам, богатый SiO 2 (сиштоф), который также используют как добавку к цементам.

Приведенные примеры шламов – это отходы цветной гидрометаллургии. Шламы образуются и во многих других производствах. Например, в целлюлозно-бумажной промышленности при механической очистке сточных вод образуются шламы, содержащие волокна целлюлозы и частицы каолина, которые также могут быть использованы в производстве строительных материалов. При обогащении руд методом флотации также образуются шламы (флотационные хвосты), которые содержат так называемую «пустую» породу (название в отличие от концентрата, который после обогащения содержит много металла). Для строителей «пустая» порода» – это измельченный камень, который может быть использован в производстве безобжиговых материалов.

Золы и шлаки тепловых электростанций (ТЭС) – минеральный остаток от сжигания твердого топлива. Одна ТЭС средней мощности выбрасывает в отвалы около 1 млн тонн зол и шлаков в год. Топливные золы и шлаки содержат все связанные или свободные оксиды, которые присутствуют в строительных каменных материалах. Поэтому они могут использоваться при производстве практически всех строительных материалов и изделий.

Вскрышные породы – отходы добычи различных полезных ископаемых открытым способом (в карьерах). Это, как считают до 3 млрд тонн в год (на всю страну) все тех же камней, т.е. по существу неисчерпаемый источник для промышленности строительных материалов.

Отходы древесины , образующиеся на лесосеках, на лесопилках, при производстве мебели, т.е. при механической обработке древесины, составляют в год около 500 млн м 3 . Из этого огромного количества отходов используется в промышленности строительных материалов (а также в целюлозно-бумажной промышленности) всего 1/6 часть. Для производства строительных материалов используют щепу, стружку, опилки. Крупные отходы лесопиления (горбыль, например) и дровяное долготьё с лесосек измельчают и применяют как наполнитель в ДСП, ДВП, ЦСП, арболите и других материалах на вяжущих.

Здесь перечислены лишь некоторые виды отходов, применяемые в производстве СМ. Использование техногенных отходов – неотъемлемая черта всех ресурсосберегающих технологий. При использовании отходов, как правило, улучшается экология за счет уменьшения отвалов, свалок, вредных выбросов сточных вод и газов.

Все последующие лекции, кроме металлов, адаптировались к первому курсу только в процессе чтения. Материалы из первой главы нашего учебника (Андреев и др. Материаловедение) здесь не повторяются.

Министерство науки и образования Украины

Киевский национальный университет строительства и архитектуры

Кафедра строительного материаловеденья

Реферат на тему: «Использование вторичных продуктов в изготовлении строительных материалов»


ПЛАН:

1. Проблема промышленных отходов и основные направления ее решения

в) Плавленые и искусственные каменные материалы на основе шлаков и зол

в) Материалы из отходов лесохимии и переработки древесины

4. Список литературы

1. Проблема промышленных отходов и основные направления ее решения.

а) Развитие промышленности и накопление отходов

Характерной особенностью научно-технического процесса является увеличение объема общественного производства. Бурное развитие производительных сил вызывает стремительное вовлечение в хозяйственный оборот все большего количества природных ресурсов. Степень их рационального использования остается, однако, в целом весьма низкой. Ежегодно человечество использует приблизительно 10 млрд. т. минеральных и почти столько же органических сырьевых продуктов. Разработка большинства важнейших полезных ископаемых в мире идет быстрее, чем наращиваются их разведанные запасы. Около 70% затрат в промышленности приходится на сырье, материалы, топливо и энергию. В то же время 10…99% исходного сырья превращаются в отходы, сбрасываемые в атмосферу и водоемы, загрязняющие землю. В угольной промышленности, например, ежегодно образуется примерно 1,3 млрд. т. Вскрышных и шахтных пород и около 80 млн. т. Отходов углеобогащения. Ежегодно выход шлаков черной металлургии составляет около 80 млн. т., цветной 2,5, зол и шлаков ТЭС 60…70 млн. т., древесных отходов около 40 млн. м³.

Промышленные отходы активно влияют на экологические факторы, т.е. оказывают существенное влияние на живые организмы. В первую очередь это относится к составу атмосферного воздуха. В атмосферу поступают газообразные и твердые отходы в результате сгорания топлива и разнообразных технологических процессов. Промышленные отходы активно воздействуют не только на атмосферу, но и на гидросферу, т.е. водную среду. Под влиянием промышленных отходов, сосредоточенных в отвалах, шлаконакопителях, хвостохранилищах и т.д., загрязняется поверхностный сток в районе размещения промышленных предприятий. Сброс промышленных отходов приводит, в конечном счете, к загрязнению вод Мирового океана, которое приводит к резкому снижению его биологической продуктивности и отрицательно влияет на климат планеты. Образование отходов в результате деятельности промышленных предприятий негативно сказывается на качестве почвы. В почве накапливаются избыточные количества губительно действующих на живые организмы соединений, в том числе канцерогенные вещества. В загрязненной «больной» почве идут процессы деградации, нарушается жизнедеятельность почвенных организмов.

Рациональное решение проблемы промышленных отходов зависит от ряда факторов: вещественного состава отходов, их агрегатного состояния, количества, технологических особенностей и т.д. Наиболее эффективным решением проблемы промышленных отходов является внедрение безотходной технологии. Создание безотходных производств осуществляется за счет принципиального изменения технологических процессов, разработке систем с замкнутым циклом, обеспечивающих многократное использование сырья. При комплексном использовании сырьевых материалов промышленные отходы одних производств являются исходными сырьевыми материалами других. Важность комплексного использования сырьевых материалов можно рассматривать в нескольких аспектах. Во-первых, утилизация отходов позволяет решить задачи охраны окружающей среды, освободить ценные земельные угодья, занимаемые под отвалы и шламохранилища, устранить вредные выбросы в окружающую среду. Во- вторых, отходы в значительной степени покрывают потребность ряда перерабатывающих отраслей в сырье. В-третьих, при комплексном использовании сырья снижаются удельные капитальные затраты на единицу продукции и уменьшается срок их окупаемости.

Из отраслей-потребителей промышленных отходов наиболее емкой является промышленность строительных материалов. Установлено, что использование промышленных отходов позволяет покрыть до 40% потребности строительства в сырьевых ресурсах. Применение промышленных отходов позволяет на 10…30% снизить затраты на изготовление строительных материалов по сравнению с производством их из природного сырья, экономия капитальных вложений достигает 35..50%.


б) Классификация промышленных отходов

К настоящему времени отсутствует всесторонняя классификация промышленных отходов. Это обусловлено чрезвычайной пестротой их химического состава, свойств, технологических особенностей, условий образования.

Все отходы промышленности можно разделить на две большие группы: минеральные (неорганические) и органические. Наибольшее значение для производства строительных материалов имеют минеральные отходы. На их долю падает преобладающая доля всех отходов, производимых добывающими и перерабатывающими отраслями промышленности. Эти отходы и в большей мере изучены, чем органические.

Баженовым П.И. предложено классифицировать промышленные отходы в момент выделения их из основного технологического процесса на три класса: А; Б; В.

Продукты класса А (карьерные остатки и остатки после обогащения на полезное ископаемое) имеют химико-минералогический состав и свойства соответствующих горных пород. Область их применения обусловлена агрегатным состоянием, фракционным и химическим составом, физико-механическими свойствами.

Продукты класса Б – искусственные вещества. Они получены как побочные продукты в результате физико-химических процессов, протекающих при обычных или чаще высоких температурах. Диапазон возможного применения этих промышленных отходов шире, чем продуктов класса А.

Продукты класса В образуются в результате физико-химических процессов, протекающих в отвалах. Такими процессами могут быть самовозгорание, распад шлаков и образование порошка. Типичными представителями отходов этого класса являются горелые породы.


2. Опыт применения отходов металлургии, топливной промышленности и энергетики


а) Вяжущие материалы на основе шлаков и зол

Основная масса отходов при получении металлов и сжигании твердого топлива образуется в виде шлаков и зол. Кроме шлаков и зол при производстве металла в больших количествах образуются отходы в виде водных суспензий дисперсных частиц-шламы.

Ценным и весьма распространенным минеральным сырьем для производства строительных материалов являются горелые породы и отходы углеобогащения, а также вскрышные породы и отходы обогащения руд.

Производство вяжущих материалов относится к наиболее эффективным областям применения шлаков. Шлаковые вяжущие можно подразделить на следующие основные группы: шлакопортландцементы, сульфатно-шлаковые, известково-шлаковые, шлако-щелочные вяжущие.

Шлаки и золы можно рассматривать как в значительной мере подготовленное сырье. В их составе окись кальция (CaO) связана в различных химических соединениях, в том числе и в виде двухкальциевого силиката - одного из минералов цементного клинкера. Высокий уровень подготовки сырьевой смеси при применении шлаков и зол обеспечивает повышение производительности печей и экономии топлива. Замена глины доменным шлаком позволяет снизить на 20% содержание известкового компонента, уменьшить при сухом производстве клинкера удельный расход сырья и топлива на 10…15%, а также повысить производительность печей на 15%.

Применением маложелезистых шлаков – доменных и феррохромовых – и созданием восстановительных условий плавки получают в электропечах белые цементы. На основе феррохромовых шлаков окислением металлического хрома в расплаве можно получить клинкеры, при использовании которых цементы с ровной и стойкой окраской.

Сульфатно-шлаковые цементы – это гидравлические вяжущие вещества, получаемые совместным тонким измельчением доменных гранулированных шлаков и сульфатного возбудителя твердения – гипса или ангидрида с небольшой добавкой щелочного активизатора: извести, портландцемента или обожженного доломита. Наиболее широкое распространение из группы сульфатно-шлаковых получил гипсошлаковый цемент, содержащий 75…85% шлака, 10…15% двуводного гипса или ангидрида, до2% окиси кальция или 5% портландцементного клинкера. Высокая активизация обеспечивается при использовании ангидрита, обожженного при температуре около 700º С, и высокоглиноземистых основных шлаков. Активность сульфатно-шлакового цемента существенно зависит от тонкости измельчения. Высокая удельная поверхность (4000…5000 см²/г) вяжущего достигается с помощью мокрого помола. При достаточно высокой тонкости измельчения в рациональном составе прочность сульфатно–шлакового цемента не уступает прочности портландцемента. Как и другие шлаковые вяжущие, сульфатно-шлаковый цемент имеет не большую теплоту гидратации – к 7 сут., что позволяет применять его при возведении массивных гидротехнических сооружений. Этому способствует также его высокая стойкость к воздействию мягких сульфатных вод. Химическая стойкость сульфатно-шлакового цемента выше, чем шлакопортландцемента, что делает его применение особенно целесообразным в различных агрессивных условиях.

Известково-шлаковые и известково-зольные цементы – это гидравлическиевяжущие вещества, получаемые совместным помолом доменного гранулированного шлака или золы уноса ТЭС и извести. Их применяют для приготовления строительных растворов марок не более М 200. Для регулирования сроков схватывания и улучшения других свойств этих, вяжущих при изготовлении их вводится до 5% гипсового камня. Содержание извести составляет 10%...30%.

Известково-шлаковые и зольные цементы по прочности уступают сульфатно-шлаковым. Их марки: 50, 100, 150 и 200. Начало схватывания должно наступать не ранее чем через 25 мин., а конец – не позднее чем через 24 ч. после начала затворения. При снижении температуры, особенно после 10º С, нарастание прочности резко замедляется и, наоборот, повышение температуры при достаточной влажности среды способствует интенсивному твердению. Твердение на воздухе возможно лишь при после достаточного продолжительного твердения (15…30 сут.) во влажных условиях. Для этих цементов характерна низкая морозостойкость, высокая стойкость в агрессивных водах и малая экзотермия.

Шлакощелочные вяжущие состоятиз тонкоизмельченногогранулированного шлака (удельная поверхность≥3000 см²/г) и щелочного компонента – соединений щелочных металлов натрия или калия.

Для получения шлакощелочного вяжущего приемлемы гранулированные шлаки с различным минералогическим составом. Решающим условием их активности является содержание стекловидной фазы, способной взаимодействовать со щелочами.

Свойства шлакощелочного вяжущего зависят от вида, минералогического состава шлака, тонкости его помола, вида и концентрации его раствора щелочного компонента. При удельной поверхности шлака 3000…3500 см²/г количество воды для образования теста нормальной густоты составляет 20…30% массы вяжущего. Прочность шлакощелочного вяжущего при испытании образцов из теста нормальной густоты составляет 30…150 МПа. Для них характерен интенсивный рост прочности как в течении первого месяца, так и в последующие сроки твердения. Так, если прочность портландцемента через 3 мес. твердения в оптимальных условиях превышает марочную примерно в 1,2 раза, то шлакощелочного вяжущего в 1,5 раза. При тепловлажностной обработке процесс твердения ускоряется также интенсивнее, чем при твердении портландцемента. При обычных режимах пропаривания, принятых в технологии сборного железобетона, в течение 28 сут. достигается 90…120% марочной прочности.

Щелочные компоненты, входящие в состав вяжущего, выполняют роль противоморозной добавки, поэтому шлакощелочные вяжущие достаточно интенсивно твердеют при отрицательных температурах.


б) Заполнители из шлакозольных отходов


Шлаковые и зольные отходы представляют богатейшую сырьевую базу для производства как тяжелых, так и легких пористых заполнителей бетона. Основными видами заполнителей на основе металлургических шлаков являются шлаковый щебень и шлаковая пемза.

Из топливных шлаков и зол изготавливают пористые заполнители, в том числе аглопорит, Зольный гравий, глинозольный керамзит.

К эффективным видам тяжелых заполнителей бетона, не уступающим по физико-механическим свойствам продукта дробления плотных природных каменных материалов, относится литой шлаковый щебень. При производстве этого материала литой огненно-жидкий шлак из шлаковозных ковшей сливается слоями толщиной 200…500 мм на специальные литейные площадки или в тарпециевидные ямы-траншеи. При выдерживании в течение 2…3 ч. на открытом воздухе температура расплава в слое снижается до 800° С, и шлак кристаллизуется. Затем он охлаждается водой, что приводит к развитию в слое шлака многочисленных трещин. Шлаковые массивы на литейных площадках или в траншеях разрабатываются эскаваторами с последующим дроблением.

Литой шлаковый щебень характеризуется высокими морозо и жаростойкостью, а также сопротивлением истиранию. Стоимость его в 3…4 раза ниже, чем щебня из природного камня.

Шлаковая пемза (тормозит) – одно из наиболее эффективных видов искусственных пористых заполнителей. Ее получаю поризацией шлаковых расплавов в результате их быстрого охлаждения водой, воздухом или паром, а также воздействием минеральных газообразователей. Из технологических способов получения шлаковой пемзы наиболее часто применяются бассейновый, струйный и гидроэкранный способы.

Топливные шлаки и золы являются лучшим сырьем для производства искусственного пористого заполнителя – аглопорита. Это обусловлено, во-первых, способностью золошлакового сырья так же, как глинистых пород и других алюмосиликатных материалов, спекаться на решетках агломерационных машин, во-вторых, содержанием в нем остатка топлива, достаточных для процесса агломерации. При использовании обычной технологии аглопорит получают в виде щебня из песка. Из зол ТЭС можно получать и аглопоритовый гравий, имеющий высокие технико-экономические показатели.

Главная особенность технологии аглопоритового гравия в том, что в результате агломерации сырья образуется не спекшийся корж, а обожженные гранулы. Сущность технологии производства аглопоритового гравия заключается в получении сырцовых зольных гранул крупностью 10…20 мм, укладке их на колосники ленточной агломерационной машины слоем толщиной 200…300 мм и термической обработке.

Производство аглопритового по сравнению с обычным производством аглопорита характеризуется снижением на 20…30% расхода технологического топлива, более низким разрежением воздуха в вакуум-камерах и увеличением удельной производительности в 1,5…3 раза. Аглопоритовый гравий имеет плотную поверхностную оболочку и поэтому при практически равной объемной массе со щебнем отличается от него более высокой прочностью и меньшим водопглощением. Расчеты что замена 1 млн. м³ привозного природного щебня агдопортовым гравием из золы ТЭС лишь за счет сокращения транспортных расходов при перевозках на расстояние 500…1000 км дает экономии 2 млн. рублей. Применение аглопорита на основе зол и шлаков ТЭС позволяет получать легкие бетоны марок 50…4000 с объемной массой от 900 до 1800 кг/м³ при расходе цемента от 200 до 400 кг/м³.

Зольный гравий получают гранулированием подготовленной золошлаковой смеси или золы-уноса ТЭС с последующим спеканием и вспучиванием во вращающейся печи при температуре 1150…1250° С. На зольном гравии получают легкие бетоны с такими же примерно показателями, как и при использовании аглопоритного гравия. При производстве зольного гравия эффективны лишь вспучивающие золы ТЭС с содержанием топливных остатков не более 10%.

Глинозольный керамзит – продукт вспучивания и спекания во вращающейся печи гранул, сформированных из смеси глин и золошлаковых отходов ТЭС. Зола может составлять от 30 до 80% всей массы сырья. Введение глинистого компонента улучшает формовочные свойства шихты, способствует выгоранию остатков угля в золе, что позволяет использовать золы с повышенным содержанием несгоревшего топлива.

Объемная масса глинозольного керамзита составляет 400..6000 кг/м³, а прочность при сдавливании в стальном цилиндре 3,4…5 МПа. Главные преимущества производства глинозольного керамзита по сравнению с аглопоритом и зольным гравием – возможность использования золы ТЭС из отвалов во влажном состоянии без использования сушильных и помольных агрегатов и более простой способ формирования гранул.

в) Плавленые и искусственные каменные материалы на основе шлаков и зол

К основным направлениям переработки металлургических и топливных шлаков, а также зол наряду с производством вяжущих, заполнителей и бетонов на их основе относится получение шлаковой ваты, литых материалов и шлакоситталов, зольной керамики и силикатного кирпича.

Шлаковая вата – разновидность минеральной ваты, занимающей ведущее место среди теплоизоляционных материалов, как по объему выпуска, так и по строительно-техическим свойствам. В производстве минеральной ваты доменные шлаки нашли наибольшее применение. Использование здесь шлака вместо природного сырья дает экономию до 150 грн. на 1 т. Для получения минеральной ваты наряду с доменными применяются также ваграночные, мартеновские шлаки и шлаки цветной металлургии.

Требуемое соотношение кислотных и основных оксидов в шихте обеспечивается применением кислых шлаков. Кроме того, кислые шлаки более устойчивы против распада, недопустимого в минеральной вате. Повышение содержания кремнезема расширяет температурный интервал вязкости, т.е. разность температур, в пределах которых возможно волокнообразование. Модуль кислотности шлаков корректируется введением в шихту кислых или основных добавок.

Из расплава металлургических и топливных шлаков отливают разнообразные изделия: камни для мощения дорог и полов промышленных зданий, тюбинги, бордюрный камень, противокоррозионные плитки, трубы. Изготовление шлакового литья началось одновременно с внедрением в металлургию доменного процесса. Литые изделия из шлакового расплава экономически более выгодны по сравнению с каменным литьем, приближаясь к нему по механическим свойствам. Объемная масса плотных литых изделий из шлака достигает 3000 кг/м³, предел прочности на сжатие 500 МПа.

Шлакоситаллы – разновидность стеклокристаллических материалов, получаемых направленной кристаллизацией стекол. В отличие от других ситаллов сырьевыми материалами для них служат шлаки черной и цветной металлургии, а также золы сжигания каменного угля. Шлакоситаллы разработаны впервые в СССР. Они широко применяются в строительстве как конструкционные и отделочные материалы, обладающие высокой прочностью. Производство шлакоситаллов заключается в варке шлаковых стекол, формировании из них изделий и последующей их кристаллизации. Шихта для получения стекол состоит из шлака, песка, щелочесодержащих и других добавок. Наиболее эффективно использование огненно-жидких металлургических шлаков, что экономит до 30…40% всего тепла, затрачиваемого на варку.

Шлакоситаллы все шире применяются в строительстве. Плитами листового шлакосситалла облицовывают цоколи и фасады зданий, отделывают внутренние стены и перегородки, выполняют из них ограждения балконов и кровли. Шлакостиалл – эффективный материал для ступеней, подоконников и других конструктивных элементов зданий. Высокая износостойкость и химическая стойкость позволяют успешно применять Шлакоситаллы для защиты строительных конструкций и аппаратуры в химической, горнорудной и других отраслях промышленности.

Золошлаковые отходы ТЭС могут служить отощающими топливосодержащими добавками в производстве керамических изделий на основе глинистых пород, а также основным сырьем для изготовления зольной керамики. Наиболее широко применяют топливные золы и шлаки как добавки при производстве стеновых керамических изделий. Для изготовления полнотелого и пустотелого кирпича и керамических камней в первую очередь рекомендуется использовать легкоплавкие золы с температурой размягчения до 1200° С. Золы и шлаки, содержащие до 10% топлива, применяют как отощающие, а 10% и более – как топливосодержащие добавки. В последнем случае можно существенно сократить или исключить введение в шихту технологического топлива.

Разработан ряд технологических способов получения зольной керамики, где Золошлаковые отходы ТЭС являются уже не добавочным материалом, а основным сырьевым компонентом. Так, при обычном оборудовании кирпичных заводов может быть изготовлен зольный кирпич из массы, включающей золу, шлак и натриевое жидкое стекло в количестве 3% по объему. Последнее выполняет роль пластификатора, обеспечивая получение изделий с минимальной влажностью, что исключает необходимость сушки сырца.

Зольную керамику выпускают в виде прессованных изделий из массы, включающей 60…80% золы-уноса, 10…20% глины и друге добавки. Изделия поступают на сушку и обжиг. Зольная керамика может служить не только стеновым материалом, обладающим стабильной прочностью и высокой морозостойкостью. Она характеризуется высокой кислотостойкостью и низкой истераемостью, что позволяет изготавливать из нее тротуарные и дорожные плиты и изделия, обладающие высокой долговечностью.

В производстве силикатного кирпича зола ТЭС используется как компонент вяжущего или заполнителя. В первом случае расход ее достигает 500 кг., во втором – 1,5…3,5 т. на 1 тыс. шт. кирпича. При введении угольной золы расход извести снижается на 10…50%, а сланцевые золы с содержанием CaO+MgO до 40…50% могут полностью заменить известь в силикатной массе. Зола в известково-зольном вяжущем является не только активной кремнеземистой добавкой, но и способствует пластификации смеси и повышению в 1,3…1,5 раза прочности сырца, что особенно важно для обеспечения нормальной работы автоматов-укладчиков.


г) Золы и шлаки в дорожно-строительных и изоляционных материалах

Крупнотоннажным потребителем топливных зол и шлаков является дорожное строительство, где золы и золошлаковые смеси используют для устройства подстилающих и нижних слоев оснований, частичной замены вяжущих при стабилизации грунтов цементом и известью, как минеральный порошок в асфальтовых бетонах и растворах, как добавки в дорожных цементных бетонах.

Золы, полученные при сжигании углей и горючих сланцев, применяются в качестве наполнителей кровельных и гидроизоляционных мастик. Золошлаковые смеси в дорожном строительстве применяют неукрепленными и укрепленными. Неукрепленные золошлаковые смеси используют в основном в качестве материала для устройства подстилающих и нижних слоев оснований дорог областного и местного значения. При содержании не более 16% пылевидной золы их применяют для улучшения грунтовых покрытий, подвергаемых поверхностной обработке битумной или дегтевой эмульсией. Конструктивные слои дорог можно выполнить из золошлаковых смесей с содержанием золы не более 25…30%. В гравийно-щебеночных основаниях в качестве уплотняющей добавки целесообразно применять золошлаковую смесь с содержанием пылевидной золы до 50%, Содержание несгоревшего угля в топливных отходах ТЭС, применяемых для возведения дорог, не должно превышать 10%.

Также как и природные каменные материалы относительно высокой прочности, золошлаковые отходы ТЭС служат для изготовления битумоминеральных смесей, применяемых для создания конструктивных слоев дорог 3-5 категорий. Из топливных шлаков, обработанных битумом или дегтем (до 2% по массе), получают черный щебень. Смешивая подогретую до 170…200° С золу с 0,3…2% раствора битума в зеленом масле, получают гидрофобный порошок с объемной массой 450…6000 кг/м³. Гидрофобный порошок одновременно может выполнять функции гидро- и теплоизоляционного материала. Распространено применение зол в качестве наполнителя мастик.


д) Материалы на основе шламов металлургических производств

Для производства строительных материалов промышленное значение имеют нефелиновые, бокситовые, сульфатные, белые и многокальциевые шламы. Объем одних лишь нефелиновых шламов, пригодных для использования, составляет ежегодно свыше 7 млн.т.

Основным направлением применения шламовых отходов металлургической промышленности являются изготовление бесклинкерных вяжущих, материалов на их основе, получение портландцемента и смешенных цементов. В промышленности особенно широко используется нефелиновый (белитовый) шлам, получаемый при извлечении глинозема из нефелиновых пород.

Под руководством П.И. Баженова разработана технология изготовления нефелинового цемента и материалов на его основе. Нефелиновый цемент является продуктом совместного помола или тщательного перемешивания предварительного измельченных нефелинового шлама (80…85%), извести или другого активизатора, например портландцемента (15…20%) и гипса (4…7%). Начало схватывания нефелинового цемента должно наступать не ранее чем через 45 мин., конец – не позднее чем через 6ч. после его затворения, Его марки 100, 150, 200 и 250.

Нефелиновый цемент является эффективным для кладочных и штукатурных растворов, а также для бетонов нормального и особенно автоклавного твердения. ПО пластичности и времени схватывания растворы на нефелиновом цементе близки к известково-гипсовым растворам. В бетонах нормального твердения нефелиновый цемент обеспечивает получение марок 100…200, в автоклавных – марок 300…500 при расходе 250…300 кг/м³. Особенностями бетонов на нефелиновом цементе является низкая экзометрия, что важно учитывать при строительстве массивных гидротехнических сооружений, высокое сцепление со стальной арматурой после автоклавной обработки, повышенная стойкость в минерализованных водах.

Близким по составу к нефелиновому цементу являются вяжущие на основе бокситового, сульфатного и других шламов металлургических производств. Если значительная часть этих минералов гидратирована, для проявления вяжущих свойств шламов необходима их сушка в интервале 300…700° С. для активизации этих вяжущих целесообразно введение добавок извести и гипса.

Шламовые вяжущие относятся к категории местных материалов. Наиболее рационально применять их для изготовления изделий автоклавного твердения. Однако они могут, применятся и в строительных растворах, при отделочных работах, изготовлении материалов с органическими заполнителями, например фибролита. Химический состав ряда металлургических шламов позволяет применять их в качестве основного сырьевого компонента портландцементного клинкера, а также активной добавки в производстве портландцемента и смешанных цементов.


е) Применение горелых пород, отходов углеобогащения, добычи и обогащения руд

Основная масса горелых пород является продуктом обжига пустых пород, сопутствующих месторождениям каменных углей. Разновидностями горелых пород являются глиежи – гилинстые и глинисто-песчанные породы, обожженные в недрах земли при подземных пожарах в угольных пластах, и отвальные, перегоревши шахтные породы.

Возможности применения горелых пород и отходов углеобогащения в производстве строительных материалов весьма разнообразны. Горелые породы, как и другие обожженные глинистые материалы, обладают активностью по отношению к извести и используются в роли гидравлических добавок в вяжущих известково-пуццоланового типа, портландцементе, пуццолановом портландцементе и автоклавных материалах, Высокая адсорбционная активность и сцепление с органическими вяжущими позволяют применять их в асфальтовых и полимерных композициях. Естественно, обжигаемые в недрах земли или в терриконах угольных шахт горелые породы – аргиллиты, алевролиты и песчаники – имеют керамическую природу и могут, применятся в производстве жаростойких бетонов и пористых заполнителей. Некоторые горелые породы являются легкими нерудными материалами, что обусловливает их использование как заполнителей для легких растворов и бетонов.

Отходы углеобогащения – ценный вид минералогического сырья, в основном используемый в производстве стеновых керамических материалов и пористых заполнителей. По химическому составу отходы углеобогащения близки к традиционному глинистому сырью. В роли вредной примеси в них выступает сера, содержащаяся в сульфатных Ии сульфидных соединениях. Теплотворная способность их колеблется в широких пределах – от 3360 до 12600 кДж\кг и более.

в производстве стеновых керамических изделий отходы углеобогащения применяют как отощающую или выгорающую топливосодержащую добавку. До введения в керамическую шихту кусковые отходы дробят. Предварительное дробление не требуется для шлама размером частиц менее 1мм. Шлам предварительно подсушивается до влажности 5…6%. Добавка отходов при получении кирпича пластическим способом должна составлять 10…30%. Введение оптимального количества топливо содержащей добавки в результате более равномерного обжига значительно улучшает прочностные показатели изделий (до 30…40%), экономит топливо (до30%), исключает необходимость введения в шихту каменного угля, повышает производительность печей.

Возможно применение шлама углеобогащения сравнительно высокой теплотворной способности (18900…21000кДж/кг) в качестве технологического топлива. Он не требует дополнительного дробления, хорошо распределяется по садке при засыпке через топливные отверстия, что способствует равномерному обжигу изделий, а главное намного дешевле угля.

Из некоторых разновидностей отходов обогащения каменного угля можно производить не только аглопорит, но и керамзит. Ценным источником нерудных материалов являются попутно добываемые породы горнодобывающих отраслей промышленности. Основным направлением утилизации этой группы отходов является производство прежде всего заполнителей бетонов и растворов, дорожно-строительных материалов, бутового камня.

Строительный щебень получают из попутных пород при добыче железной и других руд. Высококачественным сырьем для производства щебня являются безрудные железистые кварциты: роговики, кварцитовые и кристаллические сланцы. Щебень из попутных пород при добычи железной руды получают на дробильно-сортировочных установках, а также сухой магнитной сепарацией.


3. Опыт применения отходов химико-технологических производств и переработки древесины

а) Применение шлаков электротермического производства фосфора

Важным источником строительного сырья являются также сельскохозяйственные отходы растительного происхождения. Ежегодный выход, например, отходов стеблей хлопчатника составляет около 5 млн. т. в год, а льняной костры более 1 млн. т.

Отходы древесины образуются на всех стадиях ее заготовки и переработки. К ним относятся ветви, сучья, вершины, откомплевки, козырьки, опилки, пни, корни, кора и хворост, в сумме составляющие около 21% всей массы древесины. При переработке древесины на пиломатериалы выход продукции достигает 65%, остальная часть образует отходы в виде горбыля (14%), опилок (12%), срезок и мелочи (9%). При изготовлении из пиломатериалов строительных деталей, мебели и других изделий возникают отходы в виде стружки, опилок и отдельных кусков древесины – срезок, составляющих до 40% массы переработанных пиломатериалов.

Наибольшее значение для производства строительных материалов и изделий имеют опилки, стружка и кусковые отходы. Последние используют как непосредственно для изготовления клееных строительных изделий, так и переработки на технологическую щепу, а затем стружку, дробленку, волокнистую массу. Разработана технология получения строительных материалов из коры и одубины – отхода производства дубильных экстрактов.

Фосфорные шлаки - это побочный продукт производства фосфора термическим способом в электропечах. При температуре 1300…1500° С фосфат кальция взаимодействует с углеродом кокса и кремнеземом, в результате чего образуется фосфор и шлаковый расплав. Шлак сливается из печей в огненно-жидком состоянии и гранулируется мокрым способом. На 1 т. фосфора приходится 10…12т шлака. На крупных химических предприятиях получают до двух млн. т. шлака в год. Химический состав фосфорных шлаков близок к составу доменных.

Из фосфорно-шлаковых расплавов можно получать шлаковую пемзу, вату и литые изделия. Шлаковую пемзу получают по обычной технологии без изменения состава фосфорных шлаков. Она имеет объемную насыпную массу 600…800 кг/м³ и стекловидную мелкопористую структуру. Фосфорно-шлаковая вата характеризуется длинными тонкими волокнами и объемной массой 80…200 кг/м³. Фосфорно-шлаковые расплавы могут перерабатывается в литой щебень по траншейной технологии, применяемой на металлургических предприятиях.


б) Материалы на основе гипссодержащих и железистых отходов


Потребность промышленности строительных материалов в гипсовом камне в настоящее время превышает 40 млн.т. В то же время потребность в гипсовом сырье может быть в основном удовлетворенна за счет гипссодержащих отходов химической, пищевой, лесохимической промышленности. В 1980 г. в нашей стране выход отходов и побочных продуктов, содержащих сульфаты кальция, достиг примерно 20 млн. т в год, в том числе фосфогипса – 15,6 млн. т.

Фосфогипс - отходсернокислотной обработки апатитов или фосфоритов в фосфорную кислоту или концентрированные фосфорные удобрения. Он содержит 92…95% двуводного гипса с механической примесью 1…1,5% пятиокиси фосфора и некоторого количества других примесей. Фосфогипс имеет вид шлама влажностью 20…30% с высоким содержанием растворимых примесей. Твердая фаза шлама тонкодисперсная и более чем на 50% состоит из частиц размером менее 10мкм. Стоимость транспортирования и хранения фосфогипса в отвалах составляет до 30% общей стоимости сооружений и эксплуатации основного производства.

При производстве фосфорной кислоты способом экстракции по полугидратной схеме отходом является фосфополугидрат сульфата кальция, содержащий 92…95% - основного компонента высокопрочного гипса. Однако наличие на поверхности кристаллов полугидрата пассивирующих пленок заметно сдерживает проявление вяжущих свойств у этого продукта без специальной его технологической обработке.

При обычной технологии гипсовые вяжущие на основе фосфогипса низкокачественны, что объясняется высокой водопотребностью фосфогипса, обусловленной большой пористостью полугидрата в результате наличия крупных кристаллов в исходном сырье. Если водопотребность обычного строительного гипса 50…70%, то для получения теста нормальной густоты из фосфогипсового вяжущего без дополнительной обработки требуется воды 120…130%. Отрицательно влияют на строительные свойства фосфогипса и содержащиеся в нем примеси. Это влияние несколько снижается при домоле фосфогипса и формирования изделий методом виброукладки. В этом случае качество фосфогипсового вяжущего повышается, хотя и остается ниже, чем строительного гипса из природного сырья.

В МИСИ на основе фосфогипса получено композиционное вяжущее повышенной водостойкости, содержащее 70…90% α-полугидрата, 5…20% портландцемента и 3…10% пуццолановых добавок. При удельной поверхности 3000…4500 см²/г водопотребность вяжущего составляет 35…45%, схватывание начинается через 20…30 мин, кончается через 30…60 мин., предел прочности на сжатие равен 30…35 МПа, коэффициент размягчения 0,6…0,7. водостойкое вяжущее получают при гидротермальной обработке в автоклаве смеси фосфогипса, портландцемента и добавок, содержащих активный кремнезем.

В цементной промышленности Фосфогипс применяют как минерализатор при обжиге клинкера и вместо природного гипса как добавку для регулирования схватывания цемента. Добавка 3…4% в шлам позволяет увеличить коэффициент насыщения клинкера с 0.89…0,9 до 0,94…0,96 без снижения производительности печей, повысить стойкость футеровки в зоне спекания вследствие равномерного образования устойчивой обмазки и получить легко размалываемый клинкер. Установлена пригодность фосфогипса для замены гипса при помоле цементного клинкера.

Широкое применение фосфогипса как добавки в производстве цемента возможно лишь при его подсушке и гранулировании. Влажность гранулированного фосфогипса не должна превышать 10…12%. Сущность основной схемы гранулирования фосфогипса заключается в обезвоживании части исходного фосфогипсового шлама при температуре 220…250° С до состояния растворимого ангидрида с последующим смешиванием его с остальной частью фосфогипса. При смешении фосфоангидрида с фосфогипсом во вращающемся барабане обезвоженный продукт гидратируется за счет свободной влаги исходного материала, и в результате образуются твердые гранулы двуводногофосфогипса. Возможен и другой метод гранулирования фосфогипса – с упрочняющей добавкой пиритных огарков.

Кроме производства вяжущих и изделий на их основе известны и другие пути утилизации гипссодержащих отходов. Опыты показали, что добавкадо 5% фосфогипса в шихту при производстве кирпича интенсифицирует процесс сушки и способствует повышению качества изделий. Объясняется это улучшением керамико-технологических свойств глиняного сырья за счет присутствия основного компонента фосфогипса – двуводного сульфата кальция.

Из железистых отходов наиболее широко применяются пиритные огарки . В частности в производстве портландцементного клинкера их используют как корректирующую добавку. Однако огарки, расходуемые в цементной промышленности, составляют лишь небольшую часть их общего выхода на предприятиях по производству серной кислоты, потребляющих в качестве основного исходного сырья серный колчедан.

Разработана технология изготовления высокожелезистых цементов. Исходными компонентами для получения таких цементов служат мел (60%) и пиритные огарки (40%). Сырьевую смесь обжигают при температуре 1220…1250º С. Высокожелезистые цементы характеризуются нормальными сроками схватывания при введении в сырьевую смесь до 3% гипса. Прочность их на сжатие в условиях водного и воздушно-влажного твердения в течении 28 сут. соответствует маркам 150 и 200, а при пропаривании в автоклавной обработке увеличивается в 2 …2,5 раза. Высокожелезистые цементы являются безусадочными.

Пиритные огарки в производстве искусственных заполнителей бетонов могут служить как добавкой, так и основным сырьем. Добавку пиритных огарков в количестве 2…4% общей массы вводят для увеличения газотворной способности глин при получении керамзита. Этому способствует распад в огарках при 700…800º С остатков пирита с образованием сернистого газа и восстановлением оксидов железа под влиянием органических примесей, присутствующих в глинистом сырье, с выделением газов. Железистые соединения, особенно в закисной форме, действуют как плавни, вызывая разжижение расплава и уменьшение температурного интервала изменения его вязкости.

Железосодержащие добавки применяют в производстве стеновых керамических материалов для снижения температуры обжига, повышения качества и улучшения цветовых характеристик. Положительные результаты дает предварительное прокаливание огарков для разложения примесей сульфидов и сульфатов, образующих при обжиге газообразные продукты, присутствие которых снижает механическую прочность изделий. Эффективно введение в шихту 5…10% огарков, особенно в сырье с низким количеством плавней и недостаточной спекаемостью.

В производстве фасадных плиток полусухим и шлинкерным способами прокаленные огарки могут добавляться в шихты в количестве от 5 до 50% по массе. Использование огарков позволяет выпускать цветные керамические фасадные плитки без дополнительного введения в глину шамота. При этом температура обжига плиток из тугоплавких и огнеупорных глин снижается на 50…100° С.

в) Материалы из отходов лесохимии и переработки древесины


Для производства строительных материалов наиболее ценным сырьем из отходов химической промышленности являются шлаки электротермического производства фосфора, гипссодержащие и известковые отходы.

К отходам зимико-технологических производств можно отнести изношенную резину и вторичное полимерное сырье, а также ряд побочных продуктов предприятий строительных материалов: цементную пыль, осадки в водоочистительных аппаратах асбестоцементных предприятий., бой стекла и керамики. Отходы составляют до 50% всей массы перерабатываемой древесины, большая часть из них в настоящее время сжигается или вывозится в отвал.

Предприятия строительных материалов, расположенные вблизи гидролизных заводов, могут успешно утилизировать лигнин – один из наиболее емких отходов лесохимии. Опыт работы ряда кирпичных заводов позволяет считать лигнин эффективной выгорающей добавкой. Он хорошо смешивается с другими компонентами шихты, не ухудшает ее формировочных свойств и не затрудняет резку бруса. Наибольший эффект его применения имеет место при сравнительно небольшой карьерной влажности глины. Запрессованный в сырец лигнин при сушке не горит. Горючая часть лигнина полностью улетучивается при температуре 350…400º С, зольность его составляет 4…7%. Для обеспечения кондиционной механической прочности обыкновенного глиняного кирпича лигнин следует вводить в формировочную шихту в количестве до 20…25% ее объема.

В производстве цемента лигнин можно использовать как пластификатор сырьевого шлама и интенсификатор измельчения сырьевой смеси и цемента. Дозировка лигнина в этом случае составляет 0,2…0,3%. Разжижающееся действие гидролизного лигнина объясняется присутствием в нем веществ фенольного характера, хорошо снижающих вязкость известняково-глинистых суспензий. Действие лигнина при помоле заключается главным образом в уменьшении слипания мелких фракций материала и их налипании на мелющие тела.

Древесные отходы без предварительной переработки (опилки, стружка) или после измельчения (щепа, дробленка, древесная шерсть) могут служить заполнителями в строительных материалах на основе минеральных и органических вяжущих, эти материалы характеризуются невысокой объемной массой и теплопроводностью, а также хорошей обрабатываемостью. Пропиткой древесных заполнителей минерализаторами и последующим смешиванием с минеральными вяжущими обеспечивается биостойкость и трудносгораемость материалов на их основе. Общие недостатки материалов на древесных заполнителях – высокое водопоглащение и сравнительно низкая водостойкость. По назначению эти материалы делятся на теплоизоляционные и конструктивно-теплоизоляционные.

Главными представителями группы материалов на древесных заполнителях и минеральных вяжущих являются арболит, фибролит и опилкобетоны.

Арболит - легкий бетон на заполнителях растительного происхождения, предварительно обработанных раствором минерализатора. Он применяется в промышленном, гражданском и сельскохозяйственном строительстве в виде панелей и блоков для возведения стен и перегородок, плит перекрытий и покрытий зданий, теплоизоляционных и звукоизоляционных плит. Стоимость зданий из арболита на 20…30% ниже чем из кирпича. Арболитовые конструкции могут эксплуатироваться при относительной влажности воздуха помещений не более 75%. При большой влажности требуется устройство пароизоляционного слоя.

Фибролит в отличие от арболита в качестве заполнителя и одновременно армирующего компонента включает древесную шерсть – стружку длинной от 200 до 500 мм., шириной 4…7 мм. и толщиной 0,25…0,5 мм. Древесную шерсть получают из неделовой древесины хвойных, реже лиственных пород. Фибролит отличается высокой звукопоглащаемостью, легкой обрабатываемостью, гвоздимостью, хорошим сцеплением со штукатурным слоем и бетоном. Технология производства фибролита включает приготовление древесной шерсти, обработки ее минерализатором, смешиванием с цементом, прессование плит и их термическую обработку.

Опилкобетоны – это материал на основе минеральных вяжущих и древесных опилок. К ним относятся ксилолит, ксилобетон и некоторые другие материалы, близкие к ним по составу и технологии.

Ксилолитом называется искусственный строительный материал, полученный в результате твердения смеси магнезиального вяжущего и древесных опилок, затворенной раствором хлорида или сульфата магния. В основном ксилолит применяется для устройства монолитных или сборных покрытий пола. Преимущества ксилолитовых полов – относительно небольшой коэффициент теплоусвоения, гигиеничность, достаточная твердость, низкая истираемость, возможность разнообразной цветной окраски.

Ксилобетоны - разновидность легкого бетона, заполнителем которого служат опилки, а вяжущим – цемент или известь и гипс, ксилобетон при объемной массе 300…700 кг/м³ и прочности на сжатии 0,4…3 МПа применяют как теплоизоляционный, а при объемной массе 700…1200 кг/м³ и прочности на сжатие до 10 МПА – как конструктивно-теплоизоляционный материал.

Клееная древесина относится к наиболее эффективным строительным материалам. Она может быть слоистой или полученной из шпона (фанера, древеснослоистые пластики); массивной из кусковых отходов лесопиления и деревообработке (панели, шиты, брусья, доски) и комбинированной (столярные плиты). Преимущества клееной древесины – низкая объемная масса, водостойкость, возможность получения из маломерного материала изделий сложной формы, крупных конструктивных элементов. В клееных конструкциях ослабляется влияние анизотропности древесины и его пороков, они характеризируется повышенной глиностойкостью и низкой возгораемостью, не подвержены усушке и короблении. Клееные деревянные конструкции по срокам и трудозатратам при возведении зданий, стойкости при возведении агрессивной воздушной среды часто успешно конкурируют со стальными и железобетонными конструкциями. Их применение эффективно при возведении сельскохозяйственных и промышленных предприятий, выставочных и торговых павильонов, спортивных комплексов, зданий и сооружений сборно-разборного типа.

Древесно-стружечные плиты – это материал, полученный горячим прессованием измельченной древесины, смешанной со связующими веществами – синтетическими полимерами. Преимуществами этого материала являются однородность физико-механических свойств в различных направлениях, сравнительно небольшие линейные изменения при переменной влажности, возможность высокой механизации и автоматизации производства.

Строительные материалы на основе некоторых отходов древесины могут изготавливаться без применения специальных вяжущих. Частицы древесины в таких материалах связываются в результате сближения и переплетения волокон, их когезионной способности и физико-химических связей, возникающих в процессе обработки пресс-массы при высоких давлении и температуры.

Без применения специальных связующих получают древесно-волокнистые плиты.

Древесно-волокнистые плиты – материал, формируемый из волокнистой массы с последующей тепловой обработкой. Примерно 90% всех древесно-волокнистых плит изготовляют из древесины. Исходным сырьем служат неделовая древесина и отходы лесопильного и деревообрабатывающего производств. Плиты можно получать из волокон лубяных растений и из другого волокнистого сырья, обладающего достаточной прочностью и гибкостью.

В группу древесных пластиков входят: Древесно-слоистые пластики – материал из листов шпона, пропитанных синтетическим полимером резольного типа и склеенных в результате термической обработки давлением, лигноуглеводные и пьезотермопластики, производимые из древесных опилок высокотемпературной обработкой пресс-массы без ввода специальных вяжущих. Технология лигноуглеводных пластиков состоит из подготовки, сушки и дозировки древесных частиц, формования ковра, холодной его подпрессовке, горячего прессования и охлаждения без снятия давления. Область применения лигноуглеводных пластиков такая же, как древесно-волокнистых и древесно-стружечных плит.

Пьезотермопластики могут изготавливаются из опилок двумя способами – без предварительной обработки и с гидротермальной обработкой исходного сырья. По второму способу кондиционные опилки обрабатываются в автоклавах паром при температуре 170…180º С и давлении 0,8…1 МПа в течении 2 ч. Гидролизованная пресс-масса частично высушивается и при определенной влажности последовательно подвергается холодному и горячему прессованию.

Из пьезотермопластиков выпускают плитки для пола толщиной 12мм. Исходным сырьем могут служить опилки или измельченная древесина хвойных и лиственных пород, льняная или конопляная костра, камыш, гидролизный лигнин, одубина.


г) Утилизация собственных отходов в производстве строительных материалов

Опыт предприятий Крымской автономной республики, разрабатывающих известняк-ракушечник для получения стенового штучного камня, показывает эффективность изготовления из отходов камнепиления ракушечно-бетонных блоков. Блоки формируются в горизонтальных металлических формах с откидными бортами. Дно формы покрывается раствором из ракушечника толщиной 12..15 мм для создания внутреннего фактурного слоя. Форма заполняется крупнопористым или мелкозернистым бетоном из ракушечника. Фактура внешней поверхности блоков может создаваться специальным раствором. Ракушечно-бетонные блоки применяют для кладки фундаментов и стен при строительстве производственных и жилых зданий.

В производстве цемента в результате переработки тонкодисперсных минеральных материалов образуется значительное количество пыли, Общее количество улавливаемой пыли на цементных заводах может составлять до 30% всего объема выпускаемой продукции. До 80% всего количества пыли выбрасывается с газами клинкерообжигательных печей. Пыль, выносимая из печей, является полидесперсным порошком, содержащим при мокром способе производства 40…70, а при сухом – до 80% фракций размером менее 20мкм. Минералогическими исследованиями установлено, что в составе пыли содержится до 20% клинкерных минералов, 2…14% свободной окиси кальция и от 1 до 8% щелочей. Основная масса пыли состоит из смеси обожженной глины и неразложившегося известняка. Состав пыли существенно зависит от типа печей, вида и свойств применяемого сырья, способа улавливания.

Основным направлением утилизации пыли на цементных заводах является использование ее в самом процессе производства цемента. Пыль из пылеосадительных камер возвращается во вращающуюся печь вместе со шламом. Основное же количество свободной окиси кальция, щелочей и серного ангидрида. Добавка 5…15% такой пыли к сырьевому шламу вызывает его коагуляцию и уменьшение текучести. При повышенном содержании в пыли щелочных окислов также снижается качество клинкера.

Асбестоцементные отходы содержат большое количество гидратированных цементных минералов и асбеста. При обжиге в результате обезвоживании гидратных составляющих цемента и асбеста они приобретают вяжущие свойства. Оптимальная температура обжига находится в интервале 600…700º С. В этом температурном диапазоне завершается дегидратация гидросиликатов, разлагается асбест и образуется ряд минералов, способных к гидравлическому твердению. Вяжущие с выраженной активностью можно получить смешиванием термически обработанных асбестоцементных отходов с металлургическим шлаком и гипсом. Из асбестоцементных отходов изготавливают облицовочные плитки и плитки для пола.

Эффективным видом вяжущего в композициях из асбестоцементных отходов является жидкое стекло. Облицовочные плиты из смеси высушенных и измельченных в порошок асбестоцементных отходов и раствора жидкого стекла плотностью 1,1…1,15 кг/см³ получают при удельном давлении прессования 40…50 МПа. В сухом состоянии эти плиты имеют объемную массу 1380…1410 кг/м³, предел прочности на изгиб 6,5…7 МПа, на сжатие 12…16 МПа.

Из отходов асбестоцементного можно изготавливать теплоизоляционные материалы. Изделия в виде плит, сегментов и скорлуп получают из обожженных и измельченных отходов с добавкой извести, песка и газообразователей. Газобетон на основе вяжущих из асбестоцементных отходов имеют прочность на сжатие 1,9…2,4 МПа и объемную массу 370…420 кг/м³. Отходы асбестоцементной промышленности могут служить наполнителями теплых штукатурок, асфальтовых мастик и асфальтовых бетонов, а также заполнителями бетонов с высокой ударной вязкостью.

Стекольные отходы образуются как при производстве стекла, так и при использовании стеклоизделий на строительных объектах и в быту. Возврат стеклобоя в основной технологический процесс производства стекла является основным направлением его утилизации.

Из порошка стекольного боя с газообразователями спеканием при 800…900° получают один из наиболее эффективных теплоизоляционных материалов – пеностекло. Плиты и блоки из пеностекла имеют объемную массу 100…300 кг/м³, теплопроводность 0,09…0,1 Вт и предел прочности на сжатие 0,5…3 МПа.

В смеси с пластичными глинами стекольный бой может служить основным компонентом керамических масс. Изделия из таких масс изготавливают по полусухой технологии, их отличает высокая механическая прочность. Введение стекольного боя в керамическую массу снижает температуру обжига и повышает производительность печей. Выпускают стеклокерамические плитки из шихты, включающей от 10 до 70% боя стекла, измельченного в шаровой мельнице. Массу увлажняют до 5…7%. Плитки прессуют, сушат и обжигают при 750…1000º С. Водопоглащение плиток – не более 6%. морозостойкость более 50 циклов.

Битое стекло также применяют как декоративный материал в цветных штукатурках, молотые стекольные отходы можно использовать как присыпку по масляной краске, абразив – для изготовления наждачной бумаги и как компонент глазури.

В керамическом производстве отходы возникают на различных стадиях технологического процесса, Сушильный брак после необходимого измельчения служит добавкой для снижения влажности исходной шихты. Бой глиняного кирпича используется после дробления как щебень в общестроительных работах и при изготовлении бетона. Кирпичный щебень имеет объемную насыпную массу 800…900 кг/м³ , на нем можно получать бетоны с объемной массой 1800…2000 кг/м³, т.е. на 20% легче, чем на обычных тяжелых заполнителях. Применение кирпичного щебня эффективно для изготовления крупно пористых бетонных блоков с объемной массой до 1400 кг/м³. Количество кирпичного боя резко сократилось благодаря контейнеризации и комплексной механизации работ по погрузке и разгрузке кирпича.


4. Список литературы:


Боженов П.И. Комплексное использование минерального сырья для производства строительных материалов. – Л.-М.: Стройиздат, 1963.


Гладких К.В. Шлаки – не отходы, а ценное сырье. – М.: Стройиздат, 1966.


Попов Л.Н. Строительные материалы из отходов промышленности. – М.: Знание, 1978.


Баженов Ю.М., Шубенкин П.Ф., Дворкин Л.И. Применение промышленных отходов в производстве строительных материалов. – М.: Стройиздат, 1986.


Дворкин Л.И., Пашков И.А. Строительные материалы из отходов промышленности. – К.: Выща школа, 1989.



Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Рассматриваемые вопросы

1. Основные виды минерального сырья для производства строительных материалов

2. Магматические, осадочные м метаморфические горные породы

3. Техногенные вторичные ресурсы

Основным природным сырьем для производства строительных материалов являются горные породы . Их используют для изготовления керамики, стекла, металла, неорганических вяжущих веществ. Сотни кубометров песка, гравия и щебня применяют ежегодно в качестве заполнителей для бетонов и растворов.

Другим важным сырьевым источником являются техногенные вторичные ресурсы (отходы промышленности). Пока они используются недостаточно. Но по мере истощения природных ресурсов, повышения требований к охране окружающей среды и разработки новых эффективных технологий техногенное сырье будет применяться значительно шире.

Горные породы как сырьевая база
производства строительных материалов

Горные породы – это значительные по объему скопления минералов в земной коре, образовавшиеся в результате физико-химических процессов. Минералы – это вещества, обладающие определенным химическим составом, однородным строением и характерными физико-механическими свойствами. По условиям образования горные породы разделяют на три основные группы:

Магматические (первичные) горные породы образовались при охлаждении и отвердевании магмы.

Осадочные (вторичные) горные породы образовались в результате естественного процесса разрушения первичных и других пород под влиянием воздействия внешней среды.

Метаморфические (видоизмененные) горные породы образовались в результате последующего изменения первичных и вторичных пород.

Магматические горные породы

Глубинные – это породы, образовавшиеся при застывании магмы на разной глубине в земной коре. Излившиеся породы образовались при вулканической деятельности, излиянии магмы и ее затвердении на поверхности.

Главные породообразующие минералы – кварц (и его разновидности), полевые шпаты, железисто-магнезиальные силикаты, алюмосиликаты. Все эти минералы отличаются друг от друга по свойствам, поэтому преобладание в породе тех или иных минералов меняет ее строительные свойства: прочность, стойкость, вязкость и способность к обработке (к полировке, шлифовке и т.п.).

Кварц , состоящий из кремнезема (диоксида кремния SiО 2) в кристаллической форме, является одним из самых прочных и стойких минералов. Он обладает: исключительно высокой прочностью (при сжатии до 2000 МПа); высокой твердостью, уступающей только твердости топаза, корунда и алмаза; высокой химической стойкостью при обычной температуре; высокой огнеупорностью (плавится при температуре 1700°С). Цвет кварца чаще всего молочно-белый, серый. Благодаря высокой прочности и химической стойкости кварц остается почти неизменным при выветривании магматических пород, в состав которых он входит. Полевые шпаты – это самые распространенные минералы в магматических породах (до 2/3 от общей массы породы). Они представляют собой, так же как и кварц, светлые составные части пород (белые, розоватые, красные и т.п.). Главными разновидностями полевых шпатов являются ортоклаз и плагиоклазы. По сравнению с кварцем полевые шпаты обладают значительно меньшими прочностью (120-170 МПа на сжатие) и стойкостью, поэтому они реже встречаются в осадочных породах (главным образом, в виде полевошпатовых песков). Результатом выветривания является глинистый минерал – каолинит.

В группе железисто-магнезиальных силикатов наиболее распространены оливин, пироксены (например, авгит), амфиболы (роговая обманка). Среди магнезиальных силикатов встречаются вторичные минералы, чаще всего замещающие оливин, – серпентин, хризотил-асбест.

Все вышеперечисленные минералы характеризуются высокой прочностью и ударной вязкостью, а также повышенной плотностью.

Глубинные (интрузивные) горные породы. При медленном остывании магмы в глубинных условиях возникают полнокристаллические структуры. Следствием этого является ряд общих свойств глубинных горных пород: весьма малая пористость, большая плотность и высокая прочность.. Средние показатели важнейших строительных свойств таких пород: прочность при сжатии 100–300 МПа; плотность 2600–3000 кг/м 3 ; водопоглощение меньше 1 % по объему; теплопроводность около 3 Вт/(м×°С).

Граниты обладают благоприятным для строительного камня минеральным составом, отличающимся высоким содержанием кварца (25–30 %), натриево-калиевых шпатов (35–40 %) и плагиоклаза (20–25 %), обычно небольшим количеством слюды (5-10 %) и отсутствием сульфидов. Граниты имеют высокую механическую прочность при сжатии – 120–250 МПа (иногда до 300 МПа). Сопротивление растяжению, как у всех каменных материалов, относительно невысокое и составляет лишь около 1/30–1/40 от сопротивления сжатию.

Одним из важнейших свойств гранитов является малая пористость, не превышающая 1,5 %, что обусловливает водопоглощение около 0,5 % (по объему). Поэтому морозостойкость их высокая. Огнестойкость гранита недостаточна, так как он растрескивается при температурах выше 600 °С вследствие полиморфных превращений кварца. Гранит, так же, как и большинство других плотных магматических пород, обладает высоким сопротивлением истиранию.

Из всех изверженных пород граниты наиболее широко используют в строительстве, так как они являются самой распространенной из глубинных магматических пород. Остальные глубинные породы (сиениты, диориты, габбро и др.) встречаются и применяются значительно реже.

Излившиеся (эффузивные) горные породы. Магматические породы, образовавшиеся при кристаллизации магмы на небольших глубинах и занимающие по условиям залегания и структуре промежуточное положение между глубинными и излившимися породами, имеют полнокристаллические неравномернозернистые и неполнокристаллические структуры.

Среди неравномернозернистых структур выделяют порфировидные и порфировые структурыКварцевые порфиры по своему минеральному составу близки к гранитам. Их прочность, пористость, водопоглощение сходны с показателями этих свойств, присущими гранитам. Но порфиры более хрупки и менее стойки вследствие наличия крупных вкраплений.

Горные породы, образовавшиеся в результате излияния магмы, ее охлаждения и застывания на поверхности земли, состоят, как правило, из отдельных кристаллов, вкрапленных в основную мелкокристаллическую, скрытокристаллическую и даже стекловатую массу. Излившиеся породы в результате неравномерного распределения минеральных компонентов сравнительно легко разрушаются при выветривании. К плотным излившимся породам относят андезиты, базальты, диабазы, трахиты, липариты.

Андезиты – излившиеся аналоги диоритов – породы серого или желтовато-серого цвета. Структура может быть неполнокристаллическая или стекловатая. Плотность андезитов 2700-3100 кг/м 3 , предел прочности при сжатии 140-250 МПа. Андезиты применяют для получения кислотостойкого бетона.

Базальты применяют главным образом в качестве бутового камня и щебня для бетонов, в дорожном строительстве (для мощения улиц); особо плотные породы используют в гидротехническом строительстве. Базальты являются исходным сырьем для литых каменных изделий, используются для получения минеральных волокон в производстве теплоизоляционных материалов.

К пористым излившимся породам относят пемзу, вулканические туфы и пеплы, туфолавы. Пемза представляет собой пористое вулканическое стекло, образовавшееся в результате выделения газов при быстром застывании кислых и средних лав. Пористость ее достигает 60 %; стенки между порами сложены стеклом. Твердость пемзы около 6, истинная плотность 2–2,5 г/см 3 , плотность 0,3–0,9 г/см 3 . Большая пористость пемзы обусловливает хорошие теплоизоляционные свойства, а замкнутость большинства пор – достаточную морозостойкость. Пемза –ценный заполнитель в легких бетонах (пемзобетоне). Наличие в пемзе активного кремнезема позволяет использовать ее в виде гидравлической добавки к цементам и извести Вулканический пепел – наиболее мелкие частицы лавы, обломки отдельных минералов, выброшенные при извержении вулкана. Размеры частичек пепла колеблются от 0,1 до 2 мм. Вулканический пепел является активной минеральной добавкой.

Туф и туфолавы используют в виде пиленого камня для кладки стен жилых зданий, устройства перегородок и огнестойких перекрытий. Применяются туфы и в виде щебня для легких бетонов.

Осадочные горные породы

Большинство осадочных пород имеет более пористое строение, чем плотные магматические породы, а следовательно, и меньшую прочность. Некоторые их них сравнительно легко растворяются (например, гипс) или распадаются в воде на мельчайшие частицы (например, глины).

Главные породообразующие минералы. Наиболее распространенные минералы группы кремнезема – кварц, опал, халцедон. В осадочных породах присутствует кварц магматического происхождения и кварц осадочный . Осадочный кварц отлагается непосредственно из растворов, а также образуется в результате перекристаллизации опала и халцедона. Опал – аморфный кремнезем. Опал чаще всего бесцветен или молочно-белый, но в зависимости от примесей может быть желтым, голубым или черным. Плотность 1,9-2,5 г/см 3 , максимальная твердость 5-6, хрупок. Опал, халцедон, некоторые вулканические породы при применении в составе соответствующих горных пород в качестве заполнителей бетона могут вступать в реакцию со щелочами цемента, вызывая разрушение бетона. Минералы группы карбонатов имеют широкое распространение в осадочных породах. Наиболее важную роль в них играют кальцит, доломит и магнезит.

Кальцит (СаСО 3) – бесцветный или белый, при наличии механических примесей серый, желтый, розовый или голубоватый минерал. Блеск стеклянный. Плотность 2,7 г/см 3 , твердость 3. Характерным диагностическим признаком является бурное вскипание в 10 %-ной соляной кислоте.

Доломит 2 – бесцветный, белый, часто с желтоватым или буроватым оттенком минерал. Блеск стеклянный. Плотность 2,8 г/см 3 , твердость 3-4. В 10 %-ной соляной кислоте вскипает только в порошке и при нагревании. Доломит обычно мелкозернистый, крупные кристаллы встречаются редко. Образуется он либо как первичный химический осадок, либо в результате доломитизации известняков. Минерал доломит слагает породу того же названия.

Магнезит (MgCO 3) – бесцветный, белый, серый, желтый, коричневый минерал. Плотность 3,0 г/см 3 , твердость 3,5-4,5. Растворяется в НСl при нагревании. Минерал магнезит слагает породу того же названия.

К группе глинистых минералов относятся каолинит, монтмориллонит и гидрослюды.

Каолинит (Al 2 O 3 ×2SiO 2 ×2H 2 O) – белый, иногда с буроватым или зеленоватым оттенком минерал. Плотность 2,6 г/см 3 , твердость 1. На ощупь жирный. Каолинит слагает каолиновые глины, входит в состав полиминеральных глин, иногда присутствует в цементе обломочных пород.

Наиболее распространенными минералами группы сульфатов являются гипс и ангидрит.

Гипс (CaSO 4 ×2H 2 O) представляет собой скопление белых или бесцветных кристаллов, иногда окрашенных механическими примесями в голубые, желтые или красные тона. Плотность 2,3 г/см 3 , твердость 2.

Ангидрит (CaSO 4) – белый, серый, светло-розовый, светло-голубой минерал. Плотность 3,0 г/см 3 , твердость 3–3,5. Как правило, встречается в виде сплошных мелкозернистых агрегатов..

Обломочные породы. Породы рассматриваемой группы сложены преимущественно зернами устойчивых к выветриванию минералов и горных пород.

Рыхлые обломочные породы – песок (с зернами преимущественно до 5 мм) и гравий (с зернами свыше 5 мм) – применяют в качестве заполнителей для бетона, в дорожном строительстве, для железнодорожного балласта. Пески служат компонентом сырьевой смеси в производстве стекла, керамических и многих других изделий.

Глинистые породы сложены более чем на 50 % частицами мельче 0,01 мм, причем не менее 25 % из них имеют размеры меньше 0,001 мм. Они характеризуются сложным минеральным составом. За основу минералогической классификации глинистых пород принимается состав глинистых минералов. Каолиновые глины сложены минералом каолинитом. Обычно эти глины окрашены в светлые тона, жирные на ощупь, они малопластичны, огнеупорны.

Полимиктовые глины представлены двумя или несколькими минералоами, причем ни один из них не является преобладающим Каолиновые глины являются огнеупорными и их широко используют в керамической промышленности Гидрослюдистые глины и глины полимиктового состава применяют для изготовления кирпича, грубой керамики и других изделий. Глины являются также компонентом сырьевой смеси в производстве цемента. Глины используют как строительный материал при возведении земляных плотин (экраны и пр.).

Сцементированные обломочные породы – песчаники, конгломераты, брекчии. Песчаник состоит из зерен песка, сцементированных различными природными «цементами». Если в состав пород входят крупные куски (гравий или щебень), то им даются название конгломерата (при округлых кусках) и брекчии (при остроугольных кусках). Из них чаще всего применяются в строительстве песчаники (так же, как и плотные известняки

Наиболее распространенными карбонатными породами являются известняки и доломиты. Известняк – порода, сложенная более чем на 50 % кальцитом; доломит – более чем на 50 % доломитом Порода, характеризующаяся приблизительно равным содержанием карбонатного и глинистого материала, называется мергелем .

Пористость плотных известняков не превышает десятых долей процента, а рыхлых достигает 15–20 %. Доломиты по внешнему виду похожи на известняки. Цвет доломитов белый, желтовато-белый, светло-бурый. Для них характерны микрозернистые и кристаллически-зернистые структуры. Благодаря широкому распространению, легкой добыче и обработке известняки, доломитизированные известняки и доломиты применяют в строительстве чаще, чем другие породы. Их используют в виде бутового камня для фундаментов, стен неотапливаемых зданий или жилых домов в районах с теплым климатом, а наиболее плотные породы применяют в виде плит и фасонных деталей для наружных облицовок зданий. Известняковый щебень часто используют в качестве заполнителя для бетона. Известняки широко применяют как сырье для получения вяжущих веществ – извести и цемента. Доломиты используют для получения вяжущих и огнеупорных материалов в цементной, стекольной, керамической и металлургической промышленности.

Сульфатные породы – гипс и ангидрит служат сырьем для получения вяжущих веществ, иногда их применяют в виде облицовочных изделий.

Аллитовые породы характеризуются высоким содержанием глинозема. В этой группе выделяют две главные породы: бокситы и латериты. Породообразующими минералами бокситов являются гидроксиды алюминия (гиббсит и диаспор). Бокситы разнообразны по внешнему виду. Они могут быть мягкими, рыхлыми, похожими на глину Пластичностью бокситы не обладают.Их используют для производства алюминия, искусственных абразивов, огнеупоров, глиноземистого цемента.

Метаморфические горные породы

Метаморфизмом называют преобразование горных пород, происходящее в недрах земной коры под влиянием высоких температур и давлений. В этих условиях может происходить кристаллизация минералов без их плавления.

Основные разновидности метаморфических горных пород. Некоторые разновидности глинистых, кремнистых, слюдистых и иных сланцев являются естественными кровельными материалами – кровельными сланцами . Эти сланцы легко раскалываются по плоскостям сланцеватости на ровные и тонкие (2–8 мм) плоские плитки. Они должны отвечать определенным требованиям: иметь достаточную плотность и вязкость, твердость, малое водопоглощение, высокую водостойкость, стойкость к выветривания. Плотность кровельных сланцев около 2,7–2,8 г/см 3 , пористость 0,3–3 %, предел прочности при сжатии 50–240 МПа. Большое значение имеет также прочность на излом перпендикулярно сланцеватости. Кровельные сланцы используют в производстве кровельных плиток и некоторых строительных деталей (плит для внутренней облицовки помещений, лестничных ступеней, плит для пола, подоконных досок и т.п.).

Гнейсы – породы метаморфического генезиса, образовавшиеся при температуре 600–800 °С и высоком давлении. Исходными являются глинистые и кварцево-полевошпатовые (граниты) породы. Гнейсы по механическим и физическим свойствам не уступают гранитам, однако сопротивление на излом у них в 1,5–2 раза меньше.

Применяют гнейсы при бутовой кладке, для кладки фундаментов, в качестве материала для щебня и отчасти в виде плит для мощения дорог. Щебень из сильно сланцеватого гнейса не используют для бетона и дорожного строительства из-за нежелательной формы зерен.

Образование кварцитов связано с перекристаллизацией песчаников. Важными свойствами кварцитов являются высокая огнеупорность (до 1710–1770 °С) и прочность на сжатие (100–450) МПа. В строительстве кварциты используют в качестве стенового камня, подферменных камней в мостах, бута, щебня и брусчатки, а кварциты с красивой и неизменяющейся окраской – для облицовки зданий. Кварциты применяют в производстве динаса – огнеупора, обладающего высокой кислотостойкостью.

Мрамор – мелко-, средне- и крупнозернистая плотная карбонатная порода, состоящая главным образом из кальцита и представляющая собой перекристаллизованный известняк. Прочность на сжатие составляет 100-300 МПа. Мрамор легко поддается обработке, вследствие малой пористости хорошо полируется. Мрамор широко применяется для внутренней отделки стен зданий, ступеней лестниц и т.п. В виде песка и мелкого щебня (крошки) его используют для цветных штукатурок, облицовочного декоративного бетона и т.п. В условиях сульфатной коррозии для наружных облицовок мрамор не применяют.

Техногенные и вторичные ресурсы

По данным ЮНЕСКО, в мире ежегодно извлекают из недр более 120 млрд. т руд, горючих ископаемых, другого сырья (20 т сырья на каждого жителя планеты). По масштабам извлекаемого и перерабатываемого сырья хозяйственная деятельность человека превзошла вулканическую (10 млрд. т в год) и размыв суши всеми реками мира (25 млрд. т в год). Эта деятельность, кроме того, сопровождается образованием колоссального количества отходов. Основными источниками многотоннажных отходов являются: горнообогатительная, металлургическая, химическая, лесная и деревообрабатывающая, текстильная отрасли промышленности; энергетический комплекс; промышленность строительных материалов; агропромышленный комплекс; бытовая деятельность человека.

Отходы производства или побочные продукты промышленности являются вторичными материальными ресурсами. Многие отходы по своему составу и свойствам близки к природному сырью. Установлено, что использование промышленных отходов позволяет покрыть до 40 % потребности строительства в сырьевых ресурсах. Применение промышленных отходов позволяет на 10-30 % снизить затраты на изготовление строительных материалов по сравнению с производством их из природного сырья, создавать новые строительные материалы с высокими технико-экономическими показателями и, кроме того, уменьшить загрязнение окружающей среды.

Шлаки черной металлургии – побочный продукт при выплавке чугуна из железных руд (доменные, мартеновские, ферромарганцевые). Выход шлаков очень велик и составляет от 0,4 до 0,65 т на 1 т чугуна. В их состав входит до 30 различных химических элементов, главным образом в виде оксидов. Основные оксиды: SiO 2 , Аl 2 О 3 , CaO, MgO. В меньших количествах присутствуют FeO, MnO, P 2 O 5 , ТiO 2 , V 2 O 5 и др. Состав шлака зависит от состава кокса, пустой породы и определяет особенности применения шлака.

В производстве строительных материалов используется 75 % общего количества доменных шлаков. Основным потребителем является цементная промышленность. Ежегодно она потребляет миллионы тонн гранулированного доменного шлака. Грануляция заключается в быстром охлаждении шлакового расплава, в результате чего шлак приобретает стекловидную структуру и, соответственно, высокую активность.

Сталеплавильные (мартеновские) шлаки применяются в меньшей степени. Трудности их использования связаны с неоднородностью, непостоянством химического состава.

Шлаки цветной металлургии чрезвычайно разнообразны по составу. Наиболее перспективное направление их использования – комплексная переработка: предварительное извлечение цветных и редких металлов из шлака; выделение железа; использование силикатного остатка шлака для производства строительных материалов.

При получении цветных образуются шламы. Например, побочным продуктом при производстве алюминия является бокситовый шлам - рыхлый сыпучий материал красного цвета. При получении глинозема из нефелинового сырья образуется нефелиновый шламла. Если глинозем получают из высокоалюминатных глин, в качестве побочного продукта образуется каолиновый шлам и т.д. Основное применение все эти шламы находят в цементном производстве.

(ТЭС) – минеральный остаток от сжигания твердого топлива. Одна ТЭС средней мощности ежегодно выбрасывает в отвалы до 1 млн. т золы и шлака, а ТЭС, сжигающая многозольное топливо, – до 5 млн. т. По химическому составу топливные золы и шлаки состоят из SiO 2 , AI 2 O 3 , СаО, MgO и др., а также содержат несгоревшее топливо. Используются топливные золы и шлаки всего на 3–4 % от их ежегодного выхода.

Золы и шлаки ТЭС можно использовать при производстве практически всех строительных материалов и изделий. Например, введение 100–200 кг активной золы (уноса) на 1 м 3 бетона дает возможность экономить до 100 кг цемента. Шлаковый песок пригоден для замены природного песка, а шлаковый щебень – в качестве крупного заполнителя.

Отходы горнодобывающей промышленности . Вскрышные породы – горнорудные отходы, отходы добычи разнообразных полезных ископаемых. Особенно большое количество этих отходов образуется при добыче открытым способом. По ориентировочным подсчетам в стране ежегодно образуется свыше 3 млрд. т отходов, которые являются неисчерпаемым источником сырья для промышленности строительных материалов. Однако в настоящее время они используются лишь на 6–7 %. Вскрышные и пустые породы находят применение в зависимости от своего состава (карбонатные, глинистые, мергелистые, песчаные и т.д.).

Вскрышные породы – не единственные отходы горнодобывающей промышленности. Большое количество пустой породы поднимается на поверхность земли, и направляется в отвалы. Горнообогатительные комбинаты сбрасывают в отвалы большое количество флотационных хвостов, образующихся в частности при переработке руд цветных металлов. Отходы угледобычи и углеобогащения образуются на углеобогатительных фабриках. Для отходов угледобычи характерно постоянство состава, что их выгодно отличает от других видов минеральных отходов.

Попутнодобываемые породы и отходы промышленной переработки рудных полезных ископаемых отличаются по генезису, минеральному составу, структуре и текстуре от традиционно применяемых при производстве строительных материалов. Это объясняется существенным отличием глубин карьеров по добыче сырья для стройиндустрии (20–50 м) от современной разработки рудных месторождений (350–500 м).

Гипсовые отходы химической промышленности – продукты, содержащие сульфат кальция в той или иной форме. Научные исследования показали полноценную заменимость традиционного гипсового сырья отходами химической промышленности.

Фосфогипс – отход при производстве фосфорных удобрений из апатитов и фосфоритов. Он представляет собой CaSO 4 ×2H 2 O с примесями неразложившегося апатита (или фосфорита) и неотмытой фосфорной кислоты.

Фторгипс (фторангидрит) – побочный продукт при производстве фтористоводородной кислоты, безводного фтористого водорода, фтористых солей. По составу это CaSO 4 с примесями исходного неразложившегося флюорита.

Титаногипс – отход при сернокислотном разложении титансодержащих руд. Борогипс – отход производства борной кислоты. Сульфогипс получается при улавливании серного ангидрида из дымовых газов ТЭС.

Электротермофосфорные шлаки – отходы производства фосфорной кислоты, получаемой по электротермическому способу. В гранулированном виде содержат 95-98 % стекла. Основные оксиды, входящие в их состав, SiO 2 и СаО. Являются ценным сырьем в производстве вяжущих веществ.

Отходы деревообработки и лесохимии. В настоящее время в нашей стране лишь 1/6 часть древесных отходов используется в целлюлозно-бумажной промышленности и промышленности строительных материалов. Практически не используются кора, пни, вершины, ветви, сучья, а также отходы деревообработки – стружка, щепа, опилки.

Отходы целлюлозно-бумажной промышленности – осадки сточных вод и другие промышленные шламы. Скоп – продукт, получившийся в результате механической очистки сточных вод. Это грубодисперсные примеси, состоящие в основном из волокон целлюлозы и частиц каолина. Активный ил – продукт биологической очистки сточных вод, находящийся в виде коллоидов и молекул.

Отходы промышленности строительных материалов. При получении цементного клинкера до 30 % объема обжигаемого продукта уносится с дымовыми газами из печей в виде пыли. Эта пыль может

Таблица 2.1. Отходы промышленности, используемые в производстве строительных материалов

Отходы Области применения и материалы
Шлаки черной металлургии: доменные, мартеновские, ферромарганцевые Портландцемент (производство клинкера), портландцемент с минеральной добавкой, шлакопортландцемент, смешанные бесцементные вяжущие, заполнители для бетонов, шлаковая вата, шлакоситаллы и т.д.
Отходы цветной металлургии: шлаки (медеплавильных печей, никелевого производства, свинцовой шахтной плавки и т.д.), шламы (бокситовый, нефелиновый, каолиновый) Вяжущие автоклавного твердения, песок и щебень, портландцемент (производство клинкера), нефелиновый цемент, материалы для укрепления грунтов, огнеупоры, теплоизоляционные материалы и т.д.
Золы и шлаки тепловых электростанций Вяжущие, пористый гравий, газобетон, силикатные изделия, добавки к керамике и т.п.
Вскрышные породы: вскрышные и пустые породы, хвосты обогащения и т.д. Портландцемент (производство клинкера), воздушная известь, минеральная вата, стекло, пигменты, керамический кирпич, силикатный кирпич, заполнители для бетонов и т.д.
Отходы угледобычи и углеобогащения: коксохимических предприятий, углеобогатительных фабрик, шахтные негорелые породы Пористый заполнитель для бетона, керамический кирпич, материалы для строительства дорог
Гипсовые отходы химической промышленности: фосфогипс, фторгипс, титаногипс, борогипс, сульфогипс Замена традиционного гипсового сырья
Отходы древесины и лесохимии: кора, пни, вершины, ветви, сучья, горбыль, стружки, щепа, опилки, лигнин, скоп и т.д. Арболит, фибролит, ДВП, ДСП, столярные плиты, опилкобетон, ксилолит, клееные изделия, щитовой паркет, дрань, лигноуглеводные древесные пластики, королит, блоки из сучков, плиты из цельной коры, выгорающие добавки, пластифицирующие добавки, отделочные материалы, кровельный картон и т.д.
Отходы промышленности строительных материалов: цементная пыль, каменная пыль, крошка, кирпичный бой, бракованный и старый бетон Портландцемент, заполнители для бетона, минеральный наполнитель, добавки, смешанные вяжущие вещества и т.д.
Пиритные огарки Портландцемент (корректирующая добавка)
Электротермофосфорные шлаки Портландцемент (компонент сырьевой смеси), ШПЦ, сульфатостойкий ШПЦ, литой щебень, шлаковая пемза, стеновая керамика (компонент шихты)
Прочие отходы и вторичные ресурсы: стекольный бой и отходы стекла, макулатура, тряпье, изношенные шины и т.д. Стекло, наполнитель для асфальта, добавка при производстве стеновой керамики, пористый заполнитель для бетона, кровельный картон, изол, фольгоизол и т.д.

возвращаться в производство, а также использоваться в производстве вяжущих веществ.

Кирпичный бой, старый и бракованный бетон используются в качестве искусственного щебня. Бетонный лом – отход предприятий сборного железобетона и сноса строительных объектов. Огромные объемы реконструкции жилого фонда, промышленных предприятий, транспортных сооружений, автодорог и т.д. ставят важную научно-техническую задачу по переработке отходов бетона и железобетона. Разработаны различные технологии разрушения строительных конструкций, а также специальное оборудование для переработки некондиционного бетона и железобетона.

Прочие отходы и вторичные ресурсы – отходы и бой стекла, макулатура, резиновая крошка, отходы и попутные продукты производства полимерных материалов, попутные продукты нефтехимической промышленности и т.д.

Важнейшие виды строительных материалов, получаемые из вышеперечисленных отходов промышленности, приведены в табл. 1.

Контрольные вопросы

1. Глубинные породообразующие минералы магматических горных породи их физические свойства

2. Породообразующие минералы осадочных горных пород (группа кремнезема) и их свойства

3. Породообразующие минералы осадочных горных пород (группа глинистых) и их свойства

4. Разновидности метаморфических горных пород и их свойства

5. Отрасли промышленности – источники много тоннажных отходов.

6. Шлаки черной металлургии и области их применения.

7. Отвальные продукты цветной металлургии и области их применения.

8. Отходы горнодобывающей промышленности и области их применения.

9. Гипсовые отходы химической промышленности.

10. Отходы промышленности строительной индустрии и области их применения.

Наиболее обеспечены сырьем для выработки строительных материалов Центральный, Северо-Кавказский, Уральский, Поволжский, Западно-Сибирский, Волго-Вятский, Северо-Западный, Дальневосточный районы. Однако на территории многих районов важнейшие месторождения сырья часто не совпадают с центрами его массового потребления. Это обусловило необходимость дальних массовых перевозок дешевой и в целом малотранспортабельной продукции отрасли.

Производства строительного комплекса размещены крайне неравномерно. Существует разрыв между Центральным районом России и районами Сибири, Дальним Востоком. Причинами такого разрыва являются суровые климатические условия в Сибири, затрудняющие освоение данной территории; большая географическая удаленность от центральных районов; недостаточная транспортная оснащенность. Все это затрудняет развитие строительного комплекса, который здесь необходим, так как Сибирь имеет громадный нефте- и газоносный потенциал, определяющий экономическую политику районаРегиональная экономика: Учебник для вузов/ Т.Г. Морозова, М.П. Победина, Г. Б. Поляк и др.; Под ред. проф. Т.Г. Морозовой. - 2-е изд., перераб. и доп. - М.: ЮНИТИ, 2002. - 472 с..

Высокая концентрация производств промышленности строительных материалов наблюдается в Центральном, Волго-Вятском, Центрально-Черноземном, Уральском, Северо-Кавказском районах.

Более «старый» по добыче полезных ископаемых Уральский район имеет сложившийся строительный комплекс, который в основном состоит из производства стеновых материалов и железобетонных конструкций.

Большие по территории, хорошо обеспеченные природными ресурсами Северо-Кавказский и Поволжский районы обладают высокоразвитой структурой строительного комплекса. Здесь выпускаются железобетонные конструкции, строительные материалы, действует цементная промышленностьКерашев М.А., Ветров А.П. Экономическая география и регионалистика: Учебное пособие. - Краснодар: Северный Кавказ, 2002. - 178 с..

В центральной части европейской территории расположены три экономический района - Центральный, Центрально-Черноземный и Волго-Вятский, где проживает треть населения страны. Они являются исторически развитыми районами, и строительный комплекс в этом смысле не исключение.

Производство теплоизоляционных материалов. Решение проблем энергоснабжения не может быть обеспечено без применения высокоэффективных теплоизоляционных материалов. Несмотря на то, что в последние годы вопросу расширения номенклатуры и повышения качества теплоизоляционных материалов уделяется значительное внимание, на строительном рынке ощущается их дефицит. В настоящее время отечественной промышленностью производится около 9,0 млн. куб. м теплоизоляционных изделий всех видов и порядка 0,7 млн. куб. м экспортируется1. Экономическая география России: Учебник - Изд. перераб. и доп. / Под общей ред. акад. В.И. Видяпина. - М.: ИНФРА - М, Российская экономическая академия, 2009. - 568 с. - (Высшее образование)..

Классификация теплоизоляционных материалов следующая: - материалы на основе минеральных волокон и стеклянных волокон; - строительные пенопласты; - теплоизоляционные бетоны; - прочие материалы (на основе перлита, вермикулита и др.).

Структура объемов выпуска утеплителей в России близка к структуре, сложившейся в передовых странах мира, где волокнистые утеплители также занимают 60-80 процентов от общего выпуска теплоизоляционных материалов.

Распределение объемов выпуска утеплителей по стране характеризуется значительной неравномерностью. Ряд крупных регионов, таких, как Архангельская, Калужская, Костромская, Орловская, Кировская, Астраханская, Пензенская, Курганская и другие области, Республика Марий Эл, Чувашская Республика, Калмыкия, Адыгея, Карелия, Бурятия и другие, не имеют своего производства эффективных теплоизоляционных материалов. Многие регионы страны производят утеплители в явно недостаточном количестве.

Относительно благополучным является Северо-западный регион, а наибольшие проблемы с утеплителями собственного производства в Северном, Поволжском, Северокавказском и Западно-Сибирском регионах.

Следует признать, что качество и ограниченная номенклатура отечественных утеплителей, выпускаемых многими предприятиями Российской Федерации, не в полной мере отвечают нуждам жилищного строительства. Это позволяет ведущим фирмам западных стран успешно продавать свою продукцию на рынках РоссииРегиональная экономика: Учебник для вузов/ Т.Г. Морозова, М.П. Победина, Г. Б. Поляк и др.; Под ред. проф. Т.Г. Морозовой. - 2-е изд., перераб. и доп. - М.: ЮНИТИ, 2002. - 472 с..

При кажущемся обилии волокнистой теплоизоляции объем выпуска конкурентоспособной продукции, наиболее полно отвечающей требованиям современного строительства, недостаточен. В основном такая продукция выпускается предприятиями, оснащенными импортным оборудованием.

Наиболее общим для всех заводов страны путем вывода производства волокнистых утеплителей на новый качественный уровень является перевод процесса получения волокна с доменных шлаков на минеральное сырье с внедрением современных методов переработки расплава в волокноКистанов В.В., Копылов Н.В. Региональная экономика России: Учебник. - М.: Финансы и статистика, 2003. - 584 с.: ил..

Производство стеновых материалов. В последние годы в России происходит динамичное развитие жилищного строительства, что требует расширения номенклатуры производства стеновых материалов, повышения их эффективности с точки зрения сохранения тепла, снижения стоимости и возможности использовать в их производстве местные сырьевые ресурсы.

Для производства мелкоштучных стеновых изделий применяют местные широко распространенные сырьевые материалы и компоненты - глина, кварцевый песок, золы, шлаки, отходы добычи и обогащения твердого топлива, руд черных и цветных металлов и др. Для производства ячеисто-бетонных блоков используют также цемент, известь и песок.

Сырьевая база для развития производства стеновых материалов имеется практически в любом регионе страны. Значительные запасы сырья обеспечивают возможность увеличения выпуска продукции в регионах, где сохраняется дефицит по стеновым материалам.

За последние годы наблюдается устойчивая тенденция повышения спроса на мелкие ячеисто-бетонные блоки и керамические стеновые изделия. Из номенклатуры продукции заводов керамического кирпича особенно постоянным высоким спросом пользуется лицевой кирпич.

В настоящее время научно-технический прогресс в производстве стеновых материалов основывается на современных отечественных научно-исследовательских и конструкторских разработках. Технологии и оборудование для производства керамического лицевого кирпича полусухого прессования, мелких стеновых блоков из пенобетона и пенополистиролбетона соответствуют мировому уровню. Потребителю предлагается весь комплекс услуг, включая монтаж оборудования и пусконаладочные работы.

Перспективы развития рынка зависят от темпов строительства, в первую очередь от жилищного.

Наметившиеся тенденции стабилизации экономической ситуации в стране и роста доходов населения предопределяют дальнейшее увеличение объема жилищного, в том числе индивидуального строительстваКистанов В.В., Копылов Н.В. Региональная экономика России: Учебник. - М.: Финансы и статистика, 2003. - 584 с.: ил..

Объемы импортных поставок, очевидно, возрастать не будут, поскольку уже производимая отечественная продукция отвечает уровню мировых стандартов по более низкой цене по сравнению с зарубежной.

Развитие крупнопанельного домостроения. В настоящее время доля крупнопанельного жилья возросла до 30 процентов. Это свидетельствует о востребованности модернизированных энергоэффективных крупнопанельных домов и их конкурентоспособности по показателю "цена - качество" в больших населенных пунктах, где удалось сохранить и провести необходимую реконструкцию индустриальной базы строительства.

Практически завершен переход предприятий крупнопанельного домостроения на производство ширококорпусных домов на основе переработки типовых серий. Одновременно с этим на большинстве предприятий стройиндустрии осваивается производство изделий для зданий комбинированных архитектурно-строительных систем, ориентированное как на выпуск новых типов конструкций, так и на рациональное использование изделий полносборного домостроения. Одновременно на них организовано производство материалов и изделий для малоэтажного и индивидуального строительства с использованием местных сырьевых ресурсов1. Экономическая география России: Учебник - Изд. перераб. и доп. / Под общей ред. акад. В.И. Видяпина. - М.: ИНФРА - М, Российская экономическая академия, 2009. - 568 с. - (Высшее образование)..

Монолитное и сборно-монолитное строительство зданий различного назначения развивается преимущественно в больших городах, и объемы такого строительства достигли 5 процентов. Оно осуществляется с использованием новых видов легких бетонов как съемной, так и несъемной опалубки.

Горнодобывающая подотрасль промышленности строительных материалов является одной из крупнейших по объемам добычи и количеству разрабатываемых месторождений в Российской Федерации. Государственным балансом запасов полезных ископаемых учитываются около 8 тысяч месторождений 34 видов полезных ископаемых, запасы которых разведаны в качестве сырья для производства строительных материалов. Кроме того, используются месторождения некоторых видов сырья, разведанных для других целей, а также сырье ряда техногенных месторождений.

Объем добычи минерального сырья для производства строительных материалов за последние годы значительно сократился.

Россия продолжает импортировать щебень из прочных изверженных пород из стран СНГ (Украина и Белоруссия). Наблюдается неоправданное увлечение гранитным щебнем. В ряде случаев для сборного ж/б, дорожного строительства и балластировки ж.-д. путей целесообразно использовать щебень из карбонатных пород и из гравия, стоимость которых примерно в 2 раза ниже. Такая возможность подтверждается опытом развитых стран.

Технический уровень оборудования отрасли отстает от мирового, низка степень автоматизации производственных процессов. В отрасли ощущается постоянная нехватка оборудования, ряд прогрессивных машин и оборудования в нашей стране не выпускается.

Предприятия не имеют средств для приобретения нового оборудования, создания новых технологических линий, замены вышедшего из строя основного оборудования, хотя его износ находится на уровне 70-80 процентов.

Механическое рыхление скальных пород не применяется, хотя созданы несколько типов специального оборудования, способного разрабатывать скальные породы без взрывной подготовки.

Производство цемента. Цементная промышленность России является базовой отраслью строительного комплекса, от которого зависит состояние и развитие экономики страны в целом, решение проблем воспроизводственных процессов, социальных вопросов, в частности, строительство жилья, объектов здравоохранения, просвещения и культуры.

Самые крупные предприятия расположены в Центрально-Черноземном (Белгород, Старый Оскол) районе, в Поволжье (Вольск, Михайловка, Штулевск), в Сибири (Новокузнецк, Ачинск, Красноярск)Региональная экономика: Учебник для вузов/ Т.Г. Морозова, М.П. Победина, Г. Б. Поляк и др.; Под ред. проф. Т.Г. Морозовой. - 2-е изд., перераб. и доп. - М.: ЮНИТИ, 2002. - 472 с..

Для получения цемента используются разные виды сырья - известняки, мел, мергели, отходы доменного и глиноземного производства. Запасы их имеются практически во всех районах страны. Качество сырья и способы его обжига определяют выработку разнообразных видов и марок цемента. На получение его расходуется значительное количество топлива.

География цементной промышленности в значительной степени совпадает с географией строительно-монтажных работ. В настоящее время цемент вырабатывают во всех экономических районах.

Основные районы по производству цемента - Центральный, Уральский и Поволжский - работают на природном минерально-строительном сырье. На Урале цементная промышленность широко использует отходы черной металлургии.

Сырьем для производства вяжущих материалов обеспечены все районы. Широко распространены месторождения гипса, особенно в Центральном районе. Запасы глины для получения керамических изделий сосредоточены в Сибири, в Центральном, Центрально-Черноземном районах, огнеупорной глины - в Уральском районе. Повсеместно есть сырье для производства наиболее массовых заполнителей бетона - щебень, гравий, песок.

Износ основных фондов по основному виду деятельности цементных предприятий России, по данным Госкомстата РФ, постоянно растет. Производственная мощность действующих цементных предприятий из-за изношенности печного и помольного оборудования снизилась. Семнадцать миллионов тонн мощностей потеряно в основном в результате падения спроса на цементКистанов В.В., Копылов Н.В. Региональная экономика России: Учебник. - М.: Финансы и статистика, 2003. - 584 с.: ил..

В подотрасли работает 18 убыточных цементных предприятий, велика сумма дебиторской и кредиторской задолженности, в том числе просроченной.

Растут себестоимость и отпускная цена цемента, рентабельность производства составляет в среднем 10,1 процента, что явно недостаточно для накопления средств, необходимых для обновления технологии и внедрения нового современного оборудования.

Одним из важных инструментов повышения качества цемента и его конкурентоспособности является стандартизация и сертификация продукции.

Стекольная промышленность. По особенностям размещения стекольная промышленность отличается от других отраслей индустрии строительных материалов. Она в значительно большей степени привязана к месторождениям чистого кварцевого песка, зависит от поставки ряда химикатов, требует большого количества топлива, а транспортабельность готовой продукции отрасли значительно меньше, чем в других отраслях промышленности стройматериалов. Структура стекольной промышленности включает производство листового (оконного), полированного, столового стекла, стекла для стекловолокна. Наряду с многопрофильными предприятиями в отрасли сложились специализированные заводы по выпуску отдельных видов продукции.

Стекольная промышленность отличается сравнительно высокой территориальной концентрацией производства. Ведущий район в России - Центральный (Гусь-Хрустальный, Брянск), где производится около 50 % стекла в стране. В Поволжском, Северо-Западном районах вырабатывается более 20 % продукции отрасли. Многие районы, например Волго-Вятский, испытывают дефицит в изделиях стекольной промышленности.

Промышленность сборного железобетона. Это относительно новая отрасль строительной индустрии. Ее продукция используется в капитальном строительстве, поэтому она возникла и продолжает развиваться в районах и центрах концентрированного строительства. Важнейшими районами, где развита промышленность сборного железобетона, являются Центральный, Поволжский, Северо-Западный, Уральский. На них приходится 75 % всей продукции1. Экономическая география России: Учебник - Изд. перераб. и доп. / Под общей ред. акад. В.И. Видяпина. - М.: ИНФРА - М, Российская экономическая академия, 2009. - 568 с. - (Высшее образование)..

Сборные железобетонные изделия широко применяются в современном жилищном, гражданском, промышленном и транспортном строительстве.

Кризисные явления в развитии экономики в последние годы привели к сокращению объемов капитальных вложений, сжатию внутреннего рынка оборудования, строительных материалов, подрядных работ.

В чрезвычайно тяжелом положении оказались хозяйствующие субъекты, формирующие строительный комплекс.

Переход в последние годы к более жесткой финансовой и денежно-кредитной политике, включая контроль за дефицитом бюджета, обусловил в определенной мере увеличение размеров неплатежей в строительном комплексе1. Экономическая география России: Учебник - Изд. перераб. и доп. / Под общей ред. акад. В.И. Видяпина. - М.: ИНФРА - М, Российская экономическая академия, 2009. - 568 с. - (Высшее образование)..

Строительные организации испытывают недостаток в новых строительных машинах и механизмах.

Популярные статьи

© 2024 sistemalaki.ru
Бизнес-идеи. Бизнес-планы. Франшизы. База знаний. Документы