Способы передачи данных в беспроводных сетях. Беспроводная связь. Позволяет иметь доступ к сети мобильным устройствам

Беспроводные системы передачи данных

В настоящее время бурное развитие технологий беспроводных сетей открывает для бизнеса новые возможности по эффективной организации корпоративной сети предприятия. Преимущества беспроводных решений:

· низкая стоимость развертывания;

· мобильность, возможность демонтировать оборудование при переезде;

· безопасность, возможность шифрования трафика;

· надежная и качественная телефонная связь;

· высокоскоростной доступ к сети Интернет;

· независимость от кабельной инфраструктуры;

· простота подключения и использования.

Отсутствие проводов и, как следствие, привязки к какому-то конкретному месту всегда было значимо для мобильных пользователей, которым оперативный доступ к информации нужен постоянно, независимо от места их нахождения. Беспроводные сети эффективны, прежде всего, при передаче данных на расстояния до нескольких сот метров, и отличаются низкой стоимостью реализации. Ассортимент беспроводного сетевого оборудования может включать в себя беспроводные видеокамеры и прочие устройства. Развитие беспроводных систем доступа идет в трех основных направлениях. Это спутниковые системы, наземные СВЧ-системы и системы персональной сотовой связи, которые позволяют обеспечить доступ мобильных пользователей. Разумеется, каждое из этих средств имеет свои достоинства и недостатки .

Системы персональной сотовой связи

Доступ в сеть Интернет может быть организован посредством существующей системы сотовой связи с использованием аналоговых модемов (модемов для передачи по телефонным каналам) (рисунок 2). Так как каналы сотовой связи имеют достаточно узкую полосу частот, скорость передачи данных будет невелика (в процессе постепенного развития систем сотовой связи и усовершенствования технологий скорость передачи данных также постепенно росла от 9,6 Кбит/с до 19,2 Кбит/с). Определенного увеличения скорости передачи данных можно достичь за счет использования временно свободных каналов (по которым не ведутся телефонные разговоры).

Рисунок 2. Система передачи данных по каналам сотовой связи

Плюсы и минусы использования сотовой связи для доступа в сеть Интернет очевидны. Главное достоинство заключается в мобильности и возможности выхода в сеть Интернет из любого места, а не только из квартиры или офиса, которые с помощью кабеля привязаны к провайдеру. К недостаткам можно отнести достаточно высокую стоимость услуг сотовой связи, а также не стопроцентный охват территории компаниями сотовой связи и наличие зон неуверенной связи.

СВЧ-системы

По мере того, как увеличивалась потребность в расширении количества линий междугородней связи, разрабатывались системы, способные удовлетворить такие потребности. Одной из таких систем были радиорелейные линии, в которых в качестве носителя сигнала использовался не кабель, а радиоканал. Работая на сверхвысоких частотах (диапазон СВЧ) одна радиорелейная линия способна поддерживать работу тысяч телефонных каналов и нескольких телевизионных каналов одновременно. Использование данного диапазона частот приводит к необходимости размещать ретрансляторы на небольшом расстоянии друг от друга (до 30 километров) в пределах прямой видимости (сверхвысокочастотный сигнал не может завернуть за угол или перепрыгнуть даже через небольшую горку). Необходимость строить через определенное расстояние ретрансляционные вышки с антеннами делает данную технологию достаточно дорогой при организации связи на большое расстояние, но данная технология может найти свое применение, например, для организации фиксированного радиодоступа - высокоскоростной передачи данных между двумя зданиями (со скоростью от 2 Мбит/с и выше). Во многих случаях такое решение будет иметь меньшую стоимость по сравнению с прокладыванием между зданиями оптико-волоконного кабеля (например, в городах, где проложить кабель не всегда просто, или в том случае, когда эти здания разделяет река) .

В условиях недостатка частотного ресурса были созданы, успешно применяются и развиваются беспроводные системы фиксированного доступа, работающие в инфракрасной области (на основе ИК светодиодов и полупроводниковых лазеров). Они обеспечивают рабочую дальность от 300 м до 1-3 км при скорости передачи до 155 Мбит/с. Все основные недостатки этих систем (сравнительно высокая стоимость и некоторая зависимость от погодных условий и загрязнения оптики) с лихвой окупаются отсутствием необходимости получения разрешения на использование радиочастоты, а также быстротой и простотой монтажа. На следующим этапом развития систем фиксированного радиодоступа явилось создание таких протоколов обмена информацией между приемо-передатчиками, которые позволили организовать подключение многих объектов к одному (соединение "точка-многоточка"), что наиболее соответствует задачам организации доступа в Интернет (рисунок 3). Кроме того, были созданы различные механизмы (например, пакетная передача, работа на изменяющейся частоте), которые позволили увеличить пропускную способность, скорость передачи и эффективность использования частотного ресурса.


Рисунок 3 - Системы фиксированного радиодоступа

Обеспечивая среднюю скорость передачи данных, системы данного типа позволяют организовать канал передачи на достаточно большое расстояние. В то же время подверженность внешним помехам и зависимость от географических условий (обязательная необходимость прямой видимости) делают применение таких систем не всегда целесообразным.

Спутниковые системы

Для организации передачи данных используются и спутниковые системы. Причем варианты могут быть различными - от низкоскоростных индивидуальных каналов для отдельных пользователей до высокоскоростных каналов, одновременный доступ к которым может иметь большое количество пользователей (коллективный доступ). В первом случае может применяться двунаправленный канал (но это по карману только очень богатым организациям). Во втором случае спутник служит только для передачи нисходящего потока данных, поступающих из сети Интернет к пользователю (рисунок 4). Пользователю необходимо обязательно установить спутниковую антенну, СВЧ-ресивер и карту декодера прямо в персональный компьютер. Для организации восходящего потока данных (от пользователя в сеть Интернет) используется линия телефонной связи и модем.


Рисунок 4 - Спутниковая система

Спутник охватывает большую зону на поверхности Земли и является наиболее "широко охватывающей" технологией доступа в Интернет с географической точки зрения. Спутниковые системы доступа имеют не очень высокую скорость передачи данных (порядка 400 Кбит/с по направлению к пользователю) и работают не очень быстро. Представьте себе, что вы хотите загрузить какой-либо материал на экран вашего компьютера. Щелкнув на него мышью своего компьютера, вы подали сигнал запроса, который должен пройти по вашей телефонной линии, через провайдера и по обычному тракту в сети Интернет, а после ответа сигнал передается на спутник вверх и вниз, что в общей сложности составляет около 70 тысяч километров. Даже обладая скоростью света, данное средство доступа в Интернет остается достаточно медленным. Это особенно заметно при осуществлении двусторонней связи в режиме реального времени. Несмотря на широкую зону охвата, спутниковые системы имеют ряд недостатков, связанных, в частности, с необходимостью приобретения и настройки достаточно дорогостоящего оборудования. Впрочем, существует целый ряд экстремальных ситуаций, когда невозможно организовать доступ в сеть Интернет никаким другим образом, кроме как через спутник (простой пример - корабль, находящийся посреди океана).

Технология Wi-Fi - беспроводной аналог стандарта Ethernet, на основе которого сегодня построена большая часть офисных компьютерных сетей. Он был зарегистрирован в 1999 году и стал настоящим открытием для менеджеров, торговых агентов, сотрудников складов, основным рабочим инструментом которых является ноутбук или иной мобильный компьютер.

Wi-Fi - сокращение от английского Wireless Fidelity, обозначающее стандарт беспроводной (радио) связи, который объединяет несколько протоколов и имеет официальное наименование IEEE 802.11 (от Institute of Electrical and Electronic Engineers - международной организации, занимающейся разработкой стандартов в области электронных технологий). Самым известным и распространенным на сегодняшний день является протокол IEEE 802.11b (обычно под сокращением Wi-Fi подразумевают именно его), определяющий функционирование беспроводных сетей, в которых для передачи данных используется диапазон частот от 2,4 до 2.4835 Гигагерца и обеспечивается максимальная скорость 11 Мбит/сек. Максимальная дальность передачи сигнала в такой сети составляет 100 метров, однако на открытой местности она может достигать и больших значений (до 300-400 м).

Помимо 802.11b существуют еще беспроводной стандарт 802.11a, использующий частоту 5 ГГц и обеспечивающий максимальную скорость 54 Мбит/с, а также 802.11g, работающий на частоте 2,4 ГГц и тоже обеспечивающий 54 Мбит/с. Однако, из-за меньшей дальности, значительно большей вычислительной сложности алгоритмов и высокого энергопотребления эти технологии пока не получили большого распространения. Кроме того, в данное время ведется разработка стандарта 802.11n, который в обозримом будущем сможет обеспечить скорости до 320 Мбит/c.

Подобно традиционным проводным технологиям, Wi-Fi обеспечивает доступ к серверам, хранящим базы данных или программные приложения, позволяет выйти в Интернет, распечатывать файлы и т.д. Но при этом компьютер, с которого считывается информация, не нужно подключать к компьютерной розетке. Достаточно разместить его в радиусе 300 м от так называемой точки доступа (access point) - Wi-Fi-устройства, выполняющего примерно те же функции, что обычная офисная АТС. В этом случае информация будет передаваться посредством радиоволн в частотном диапазоне 2,4-2,483 ГГц.

Таким образом, Wi-Fi-технология позволяет решить три важных задачи:

· упростить общение с мобильным компьютером;

· обеспечить комфортные условия для работы деловым партнерам, пришедшим в офис со своим ноутбуком,

· создать локальную сеть в помещениях, где прокладка кабеля невозможна или чрезмерно дорога.

Кроме этого, само существование сети Wi-Fi - важный штрих к портрету фирмы. Он так же работает на ее корпоративный имидж, как кожаные кресла в переговорной и красиво изданные информационные буклеты.

Беспроводная технология может стать как основой IT-системы компании, так и дополнением к уже существующей кабельной сети.

Ядром беспроводной сети Wi-Fi является так называемая точка доступа (Access Point), которая подключается к какой-либо наземной сетевой инфраструктуре (например, офисной Ethernet-сети) и обеспечивает передачу радиосигнала. Обычно точка доступа состоит из приёмника, передатчика, интерфейса для подключения к проводной сети и программного обеспечения для обработки данных. После подключения вокруг точки доступа образуется территория радиусом 50-100 метров (её называют хот-спотом или зоной Wi-Fi), на которой можно пользоваться беспроводной сетью.

Для того чтобы подключиться к точке доступа и ощутить все достоинства беспроводной сети, обладателю ноутбука или другого мобильного устройства, оснащенного Wi-Fi адаптером, необходимо просто попасть в радиус её действия. Все действия по определению устройств и настройке сети большинством ОС производятся автоматически. Если пользователь попадает одновременно в несколько Wi-Fi зон, то происходит подключение к точке доступа, обеспечивающей самый мощный сигнал. Время от времени производится проверка наличия других точек доступа, и в случае, если сигнал от новой точки сильнее, устройство переподключается к ней, настраиваясь абсолютно прозрачно и незаметно для владельца

Одним из главных достоинств любой Wi-Fi сети является возможность доступа в Интернет для всех её пользователей, которая обеспечивается либо прямым подключением точки доступа к интернет-каналу, либо подключением к ней любого сервера, соединенного с Интернет В обоих случаях мобильному пользователю не нужно ничего самостоятельно настраивать - достаточно запустить браузер и набрать адрес какого-либо интернет-сайта.

Также несколько устройств с поддержкой Wi-Fi могут соединяться друг с другом напрямую (связь устройство - устройство), то есть без использования специальной точки доступа, образуя некое подобие локальной сети, в которой можно обмениваться файлами, но в этом случае ограничивается число видимых станций.

В случае с устройствами без встроенной поддержки Wi-Fi (например, с обычными домашними или офисными компьютерами) нужно будет приобрести специальную карту, поддерживающую этот стандарт. Сейчас ее средняя стоимость составляет около 30-50 долларов, а подключаться к компьютеру она может через стандартные интерфейсы (PCI, USB, PCMCIA и т.п.).

Беспроводные технологии - подкласс информационных технологий, служат для передачи информации на расстояние между двумя и более точками, не требуя связи их проводами. Для передачи информации может использоваться инфракрасное излучение, радиоволны, оптическое или лазерное излучение.

В настоящее время существует множество беспроводных технологий, таким как Wi-Fi , WiMAX , Bluetooth .

Общ. стандарт беспровод. связи IEEE 802.11.

Существуют различные подходы к классификации беспроводных технологий.

- По дальности действия:

      Беспроводные персональные сети. Примеры технологий - Bluetooth .

      Беспроводные локальные сети. Примеры технологий - Wi-Fi .

      Беспроводные сети масштаба города. Примеры технологий - WiMAX .

      Беспроводные глобальные сети. Примеры технологий - CSD,GPRS,EDGE,EV-DO,HSPA .

- По топологии:

      «Точка-точка».

      «Точка-многоточка».

- По области применения:

      Корпоративные беспроводные сети - создаваемые компаниями для собственных нужд.

      Операторские беспроводные сети - создаваемые операторами связи для возмездного оказания услуг.

Отличия проводных и беспроводных технологий передачи данных

Характеристика

Проводные

Беспроводные

Среда передачи

Кабель не требуется, передача при помощи электромагнитных волн

Пропускная способность

Ограниченная

Расстояния между точками

Как правило, ограничены

Мобильность абонентов

Не обеспечивается

Может быть обеспечена

Например, Wi-Fi-сеть – это радиосеть, позволяющ. передавать информацию м/д объектами по радиоволнам.

Для организации сетей Wi-Fi необход. Wi-Fi сетевые карты, точки доступа и антенны.

Wi-Fi точки доступа – устройства, позволяющие объеденить клиентов сети в единую сеть; представл. в 2 основных вариантах исполнения- для использования внутри помещений и для внеш. использования.

Wi-Fi связь характеризуется большим числом преимуществ по сравнению с провод. (легко разворачивается, пользователи легко перемещаются в пределах зоны действия сети), но недостатком явл. возможность легкого перехвата данных и взлома сети.

Принципы организации беспровод. сетей. 2 режима организац. беспровод.сетей:

Ad-hoc (Peer-to Peer) (Точка-точка)

Infrasturuture Mode

Режим Ad-hoc– простейшая структура локальной сети, при кот.узлы сети связаны напрямую друг с другом,без использования специальной точки доступа.

В режиме Inf.Modeузлы сети связаны друг с др. не напрямую, а ч/з точку доступа, т.к.AccessPoint,подключенной к проводной сети, и некоторого набора беспроводных клиентских станций.

64 Беспроводные технологии пе редачи информации (а/в)

Методы беспроводной технологии (wireless) передачи данных являются удобным, а иногда незаменимым средством связи. Беспроводные технологии различаются по типам сигнала, частоте и расстоянию передачи. Большое значение имеют помехи и стоимость. Можно выделить три основных типа беспроводной технологии:

Радиосвязь;

Связь в микроволновом диапазоне;

Инфракрасная связь.

Передача данных в микроволновом диапазоне (microwaves) использует высокие частоты и применяется как на коротких, так и на больших расстояниях. Главное ограничение заключается в том, чтобы передатчик и приемник были в зоне прямой видимости. Передача данных в микроволновом диапазоне при использовании спутников может быть очень дорогой.

Инфракрасные технологии (Infrared transmission) функционируют на очень высоких частотах, приближающихся к частотам видимого света. При инфракрасной связи обычно используют светодиоды для передачи инфракрасных волн приемнику.

Инфракрасная передача ограничена малым расстоянием в прямой зоне видимости и может быть использована в офисных зданиях.

Технологии радиосвязи пересылают данные на радиочастотах и практически не имеют ограничений по дальности. Радиосвязь используется для соединения локальных сетей на больших географических расстояниях. Радиопередача в целом имеет высокую стоимость и чувствительна к электронному и атмосферному на­ложению, а также подвержена перехватам, поэтому требует шифрования для обеспечения уровня безопасности.

В настоящее время наибольшее распространение получила так называемая Wi-Fi связь.

Wi-Fi сеть (Wireless Local Area Network, WLAN) - это радиосеть, позволяющая передавать информацию между объектами по радиоволнам (без проводов).

WLAN -сети имеют ряд преимуществ перед обычными кабельными сетями:

    WLAN-сеть можно очень быстро развернуть, что очень удобно при проведении презентаций или в условиях работы вне офиса;

    пользователи мобильных устройств, при подключении к локальным беспроводным сетям, могут легко перемещаться и рамках действующих зон сети;

    скорости современных сетей довольно высоки (до 300 Мбит/с), что позволяет их использовать для очень широкого спектра задач;

    с помощью дополнительного оборудования беспроводная сеть может быть успешно соединена с кабельными сетями;

    WLAN-сеть может оказаться единственным выходом, если невозможна прокладка кабеля для обычной сети.

Несмотря на все достоинства, WLAN-сети обладают рядом недостатков, главный из которых - возможность легкого перехвата данных и взлома сети.

Требования к беспроводным локальным сетям

Беспроводные сети должны удовлетворять некоторым требованиям, типичным для всех локальных сетей, в том числе: высоким пропускная способность, возможность охвата небольших расстояний, связность подключенных станций и возможность широковещания. Кроме того, существует набор требований, характерных только для беспроводных локальных сетей. Перечислим важнейшие из них.

1. Производительность. Протокол управления доступом к среде должен максимально эффективно использовать беспроводную среду для максимизации пропускной способности.

2. Число узлов. От беспроводных локальных сетей может требоваться поддержка сотен узлов из множества ячеек.

3. Соединение с магистральной локальной сетью. В большинстве случаев требуется взаимосвязь со станциями магистральной локальной сети. Для беспроводных локальных сетей, имеющих внутреннюю инфраструктуру, это требование легко удовлетворяется посредством использования модулей управления, присоединяемых к локальным сетям обоих типов.

4. Обслуживаемая область. Типичная сфера охвата беспроводной локальной сети имеет диаметр 100-300 м.

5. Потребление питания от батарей. Мобильные сотрудники используют рабочие станции с питанием от батарей, потребление которого не должно быть большим при использовании беспроводных адаптеров.

6. Устойчивость передачи и безопасность. Беспроводные сети,если они разработаны неправильно, могут быть подвержены интерференции (наложение сигналов) и легко прослушиваться. Структура беспроводной локальной сети должна обеспечивать надежную передачу даже в обстановке шума, а также некоторый уровень зашиты от прослушивания.

7 . Совместная работа в сети. С ростом популярности беспроводных сетей повысилась вероятность того, что две или более сетей будут работать в одной области или в нескольких областях, допускающих интерференцию разных локальных сетей. Такая интерференция может мешать нормальной работе алгоритма MAC и способствовать несанкционированному доступу к отдельной локальной сети.

8. Работа без лицензии. Пользователи желали бы приобретать продукты рынка беспроводных локальных сетей и работать с ними на нелицензируемой полосе частот.

9. Переключение/роуминг. Протокол MAC, используемый в беспронодных локальных сетях, должен позволять мобильным станциям перемещаться из одной ячейки в другую.

10.Динамическая конфигурация. МАС-адресация и сетевое управление локальной сети должны обеспечивать динамическое и автоматическое добавление, удаление и передислокацию конечных систем, не причиняя неудобств другим пользователям.

Олег Иванин для сайт

Технологии беспроводной связи сегодня переживают подлинный бум развития. В основном это связано с прочным входом в нашу жизнь смартфонов, планшетных и мобильных компьютеров, которые, в том числе, могут служить универсальными пультами диспетчеризации АСУ ТП, при условии постоянного доступа к сети Интернет, вне зависимости от того, перемещается ли терминал в пространстве. Кроме того, в различных отраслях промышленности, сельском хозяйстве, в военной сфере назревает необходимость в организации надежных систем управления распределенными объектами и объединение их в глобальную сеть. Подобные тенденции наблюдаются во всем мире и ведут к неминуемому развитию беспроводных технологий связи.

Системы АСУ ТП, которые зачастую являются распределенными, характеризуются в настоящее время тенденцией модернизации при условии неизменности основных средств производства (линий, машин и механизмов). Качество производства меняется в короткие сроки за счет модернизации АСУ ТП, в том числе, с применением беспроводных технологий, приносящих экономию средств и времени, по сравнению с развертыванием проводных сетей.

В настоящей статье рассматриваются, и, отчасти, сравниваются различные продукты производителей беспроводных аппаратных средств связи, охватывающие такие области применения, как промышленные АСУ ТП, и АСУ инженерных систем зданий и сооружений (BMS).

Типы беспроводных сетей, которые применимы в этих сферах, следующие:

  • Персональные беспроводные сети.
  • Беспроводные сенсорные сети.
  • Малые локальные беспроводные сети.
  • Большие локальные беспроводные сети.

В своем обзоре мы не рассматриваем оборудование и программное обеспечение для организации глобальных сетей и сетей, использующих услуги телекоммуникационных провайдеров (GSM, GPRS, EDGE, 3G, WiMAX и т.д.)

Выбор технологии для различных систем

Вначале мы кратко остановимся на принципах выбора беспроводных аппаратных средств для организации АСУ ТП.

Сегодня основная проблема для пользователя, решившего применить беспроводные решения, заключается в выборе соответствующей технологии. Существует множество типов беспроводной связи и, как и в проводных сетях, к различным системам предъявляются различные требования.

При выборе технологии следует руководствоваться следующими факторами:

  • Объем данных: некоторым потребителям требуется собирать мегабиты данных в секунду, другим необходимо всего лишь несколько раз в сутки включать и выключать отдельные устройства.
  • Время oткликa: когда устройство является частью цепи, получение команды в заданный момент является существенным критерием. Требуемое время реакции может составлять несколько микросекунд.
  • Надежность oткликa: будет ли сообщение получено наверняка и, если нет, какова вероятность обнаружения ошибок? Здесь при выборе технологии важную роль играют помехи.
  • Дистанция связи: расположены ли узлы сети на большой территории или сосредоточены в одном месте? Дистанция может составлять от нескольких метров для подвижных частей механизма до нескольких километров для насосных станций распределительной сети. Охватываемое расстояние задает потребляемую мощность и зачастую определяет, можно ли использовать не требующую лицензирования технологию связи.
  • Число узлов связи: требуется ли связь только между двумя узлами, или в ней участвует множество узлов, что потребует использовать более совершенную структуру связи (топология Scatternet).

Вам нравится эта статья? Поставьте нам Like! Спасибо:)

Краткий обзор типов беспроводных сетей

Персональные беспроводные сети

  • IrDA (Infrared Data Association) - связь в инфракрасном диапазоне световых волн
  • Bluetooth - технология радиосвязи малого радиуса действия (обычно до 200 метров) в диапазоне частот, свободном от лицензирования (ISM-диапазон: 2,4-2,4835 ГГц).
  • UWB (Ultra-Wide Band) - технология беспроводной связи на малых дальностях (около 10 метров), использующая самый широкий диапазон частот для коммерческих устройств связи.
  • Wireless USB, беспроводной USB - предназначен для замены проводного USB.
  • Wireless HD - беспроводная технология передачи данных, в основном предназначенная для передачи HD-видео, однако ее также можно использовать для организации беспроводной сети.
  • WiGig (IEEE 802.11ad.) - технология широкополосной беспроводной связи, работающая в нелицензируемой полосе частот 60 ГГц и обеспечивающая передачу данных до скоростью 7 Гбит/с на расстояние до 10 метров.
  • WHDi, Wireless Home Digital Interface (Amimon) - беспроводная технология передачи данных, используемая для высокоскоростной передачи данных и оптимизированная для передачи видео высокого разрешения.
  • LibertyLink - технология организации беспроводной персональной сети, разработанная компанией Aura. Для передачи информации используется эффект магнитной индукции.
  • DECT/GAP - цифровая усовершенствованная система беспроводной телефонии; технология беспроводной связи, используемая в современных радиотелефонах.

Беспроводные сенсорные сети

  • DASH7 - стандарт организации беспроводных сенсорных сетей. Сенсорная сеть - это сеть миниатюрных вычислительных устройств, снабженных сенсорными датчиками.
  • Z-Wave - технология беспроводной радиосвязи, используемая для организации сенсорных сетей. Основное назначение сетей Z-Wave - дистанционное управление бытовой техникой и различными домашними устройствами, обеспечивающими управление освещением, отоплением и другими устройствами для автоматизации управления жилыми домами и офисными помещениями.
  • Insteon - комбинированная (частично проводная и частично беспроводная) сенсорная сеть. Для передачи информации используется радиосигнал на частоте 902-924 МГц, обеспечивающий передачу данных на дальности до 45 метров в условиях прямой видимости со средней скоростью 180 бит/с.
  • EnOcean - технология организации беспроводных сенсорных сетей, использующая сверхминиатюрные датчики с генераторами электроэнергии, микроконтроллерами и приемо-передатчиками.
  • ISA100.11a - стандарт организации промышленных сенсорных сетей, сетей датчиков и приводов. Для передачи используется низкоскоростная беспроводная связь с использованием элементов с низким энергопотреблением. Отличительная особенность ISA100.11a от других сенсорных сетей: 1) ориентированность на промышленное использование и, соответственно, специфические требования к прочности, помехозащищенности, надежности и безопасности, 2) возможность эмуляции средствами технологии ISA100.11a протоколов уже существующих и проверенных проводных и беспроводных сенсорных сетей. Обмен данными осуществляется на частоте в районе 2,4 ГГц и скорости порядка 250 кбит/с.
  • WirelessHART - протокол передачи данных по беспроводной линии связи, разработанный HART Communication Foundation для передачи данных в виде HART- сообщений в беспроводной среде. HART - протокол обмена данными для взаимодействия с полевыми датчиками.
  • MiWi - протокол для организации сенсорных и персональных сетей с низкой скоростью передачи данных на небольшие расстояния, основанный на спецификации IEEE802.15.4 для беспроводных персональных сетей.
  • 6LoWPAN - стандарт, обеспечивающий взаимодействие малых беспроводных сетей (частных сетей или сетей датчиков) с сетями IP по протоколу IPv6.
  • One-Net - открытый протокол для организации беспроводных сенсорных сетей и сетей автоматизации зданий и распределенных объектов.
  • Wavenis - беспроводная технология передачи данных, использующая частоты 433/868/915 МГц и обеспечивающая передачу на расстояние до 1000 м на открытом пространстве и до 200 м в помещении, при скорости до 100 Кбит/с. Технологию Wavenis используют для организации персональных сетей и сетей датчиков, так как сверхнизкое потребление приемо-передающих устройств позволяет им работать автономно до 15 лет от одной батарейки.
  • RuBee - локальная беспроводная сеть, которая, в основном, используется как сеть датчиков. Для передачи данных в RuBee используются магнитные волны, и передача осуществляется на частоте 131 КГц, что обеспечивает скорость всего лишь 1200 бод в секунду на расстояниях от 1 до 30 метров.

Малые локальные беспроводные сети

  • HiperLAN (High Performance Radio LAN) - стандарт беспроводной связи. Существует две ревизии стандарта: HiperLAN 1 и HiperLAN 2. Стандарт HiperLAN 1 выпущен 1981 году и описывает более медленную линию связи, обеспечивающую скорость передачи данных до 10Мбит/с на расстоянии до 50 метров.
  • Wi-Fi - торговая марка объединения Wi-Fi Alliance, представляющая собой семейство стандартов спецификации IEEE 802.11 для широкополосной радиосвязи. В зависимости от стандарта, Wi-Fi использует для передачи данных диапазон частот в районе 2,4 ГГц или 5 ГГц и обеспечивает скорость передачи данных от 2 Мбит/с на расстояниях до 200 метров.
  • ZigBee - технология организации беспроводных сенсорных и персональных сетей. Технология ZigBee обеспечивает невысокое потребление энергии и передачу данных на нелицензируемой частоте 2.4 ГГц (для различных стран частота может отличаться) со скоростью до 250 Кб/с, на расстояние до 75 метров в условиях прямой видимости.
  • RONJA (Reasonable Optical Near Joint Access) - технология беспроводной передачи данных с использованием оптического сигнала.

Большие локальные беспроводные сети

  • WiMAX (Worldwide Interoperability for Microwave Access) - беспроводная технология передачи данных, основанная на стандарте IEEE 802.16. Основное назначение технологии - это высокоскоростная связь на больших расстояниях и предоставление доступа в Интернет.
  • HiperMAN - беспроводная технология передачи данных на базе стандарте IEEE 802.16. Европейская альтернатива технологии WiMAX. HiperMAN специализирована для пакетной передачи данных и организации беспроводных IP-сетей.
  • WiBro (Wireless Broadband) - беспроводная технология высокоскоростной передачи данных на большие расстояния, основанная на стандарте IEEE 802.16e. Северокорейский аналог технологии WiMAX Mobile.
  • Classic WaveLAN - технология беспроводной связи, используемая для организации локальных сетей (беспроводная альтернатива проводных сетей Ethernet и Token Ring). Передача данных осуществляете в диапазоне частот в 900 МГц или 2.4 ГГц, при этом обеспечивается скорость передачи до 2 Мбит/с.

Производители аппаратных средств организации беспроводных сетей АСУ ТП

В настоящем обзоре будут рассмотрены некоторые интересные предложения популярных в настоящее время производителей, представляющих на рынке аппаратуру для:

  • Промышленных АСУ ТП: Phoenix Contact, Siemens, Omron, Moxa
  • АСУ инженерных систем зданий и сооружений, «умный дом»: Thermokon, JUNG

При написании обзора широко использован практический опыт применения ряда перечисленных устройств.

Phoenix Сontact

Благодаря развитой номенклатуре и отличной функциональности изделий Phoenix Contact занимает отличные позиции на рынке беспроводных решений для промышленной автоматизации.

Phoenix Contact поставляет компоненты для решения любых задач, связанных с построением систем беспроводной связи в промышленных условиях. Устройства беспроводной связи сконструированы для эксплуатации в жестких промышленных условиях, характеризуются высокой надежностью, простотой и удобством использования, а также максимальной защищенностью передачи данных.

Передача небольшого количества сигналов или огромных объемов данных, обеспечение связи в режиме реального времени между близко расположенными или удаленными на сотни метров устройствами, в производственных помещениях с металлическими преградами или в условиях открытой местности - для этих и других требований возможен подбор соответствующих компонентов и аксессуаров к ним производства Phoenix Contact.

В каждой области применения предъявляются свои требования к радиосвязи. Phoenix Contact предлагает серию изделий для беспроводной связи, созданных на основе различных технологий, которые позволяют решать коммуникационные задачи гибко, просто и экономично.

В каждой конкретной области применения предъявляются свои функционально-технические требования к технологиям беспроводной связи. Поскольку в настоящее время ни одна из существующих технологий радиосвязи не способна удовлетворить всем требованиям, компания Phoenix Contact предлагает решения, основанные на различных технологиях.

Итак, какие же аппаратные средства по типам связи предлагает потребителям Phoenix Contact?

Bluetooth I/O (IEEE 802.15.1). Основная область применения технологии Bluetooth - интеграция компонентов систем автоматизации в локальные сети на базе полевой шины или в сети промышленного Ethernet. Благодаря поддержке различных пользовательских профилей стандарт беспроводной связи может применяться для решения широкого круга задач. Отличительные особенности:

  • Очень надежный способ передачи данных в производственных помещениях с металлическими объектами.
  • Возможность локальной параллельной работы нескольких сетей Bluetooth.
  • Автоматические механизмы сосуществования обеспечивают помехоустойчивую параллельную работу WLAN 802.11b/g.
  • Объединение радиосетью до семи оконечных устройств.
  • Пропускная способность до 1 Мбит/с.
  • Дальность передачи, как правило, более 100 м в производственных помещениях и более 200 м в условиях открытой местности.
  • Оптимально подходит для быстрой циклической передачи небольших пакетов данных.
  • Прозрачная передача данных по сети Ethernet на уровне Layer-2, например, в системах PROFINET IO.
  • Высокая защищенность данных благодаря кодированию данных с 128-битным ключом и аутентификации оконечных устройств Trusted Wireless.

Bluetooth I/O - эффективная технология в исполнении Phoenix Contact для автоматизации промышленных цехов (например, текстильная, химическая промышленности) без создания проекта АСУ ТП в привязке к строительным конструкциям. Создание проекта и развертывание системы можно осуществить весьма быстро и не будет дополнительных требований к прокладке кабелей и установке оборудования.

Phoenix Contact Factory Line Bluetooth для беспроводной передачи управляющих сигналов

Среди способов надежной беспроводной передачи данных передачи стоит отметить:

Trusted Wireless - технология промышленной радиосвязи для передачи некритичных к задержкам сигналов процесса на большие расстояния - до нескольких километров.

Phoenix Contact Radioline на основе технологии Trusted Wireless

Wireless MUX - простое решение для передачи цифровых и аналоговых процессных и управляющих сигналов - просто и надежно без кабеля, от одной точки к другой. Уверенная и надежная передача на расстояния до нескольких сотен метров.

Система многоканальной беспроводной связи Phoenix Contact Wireless-MUX

Wireless I/O - технология для беспроводной передачи критичных к задержкам процессных и управляющих сигналов в сетях автоматических систем управления. Характеризуется высоким быстродействием, надежностью, простым и удобным обслуживанием.

Высокопроизводительные сети представлены технологией WLAN (IEEE 802.11). На базе WLAN возможна реализация сетей, объединяющих множество оконечных устройств. Поскольку системы WLAN допускают простую интеграцию в информационные сети, то прекрасно подходят для мобильного управления, контроля и регистрации данных. Кроме того, возможно создание быстрого канала связи между управляющими устройствами и передача входных и выходных данных в режиме реального времени в системах PROFINET I/O. Другие особенности:

  • Возможность создания больших сетей, объединяющих несколько сотен оконечных устройств
  • Высокая пропускная способность до 300 Мбит/с.
  • Благодаря функции автоматического роуминга возможно создание сетей с большой зоной покрытия, обеспечивающих высокую мобильность.
  • Дальность передачи, как правило, до 100 м в производственных помещениях и более 200 м в условиях открытой местности. В отдельных случаях, дальность передачи может составлять более 1 км.

Основные типы оборудования Phoenix Contact, поддерживающие перечисленные технологии:

Wireless Ethernet - применяются для беспроводного подключения к сети Ethernet компонентов системы автоматизации. Передача данных на уровне Layer-2 производится в прозрачном в отношении протоколов режиме. Поддерживаются протоколы промышленного Ethernet, такие как PROFINET, Modbus/TCP и EtherNet/IP.

Factory Line Bluetooth - надежные коммуникационные компоненты для небольших локальных беспроводных сетей, работающих параллельно.

Factory Line WLAN - компоненты, обеспечивающие высокоскоростной беспроводной доступ к сети Ethernet с большой зоной покрытия.

Factory Line Wireless Serial - устройства с последовательным интерфейсом, интегрируемые в сеть Ethernet с помощью компонентов Factory Line Bluetooth или Factory Line WLAN.

Надежность

Набольшее внимание уделяется надежности и помехозащищенности каналов беспроводной связи в жестких промышленных условиях. Беспроводная передача данных осуществляется посредством электромагнитных волн. При этом на канал радиосвязи воздействуют внешние источники электромагнитных помех.

Сильные электромагнитные поля радиопомех, создаваемые в производственных помещениях различными устройствами, например, преобразователями частоты, в результате коммутации нагрузок или работы сварочного аппарата не оказывают влияния на радиосвязь, поскольку такие электромагнитные помехи находятся в пределах кило- или мегагерцового диапазона, в то время как Bluetooth, Trusted Wireless и WLAN работают в диапазоне 2,4 ГГц. Дополнительно Bluetooth, Trusted Wireless и WLAN поддерживают сигналы с расширенным спектром и другие механизмы, обеспечивающие высокую надежность передачи данных.

Достоинства

Безусловно, к достоинствам данного производителя можно отнести надежность обеспечения устойчивости и помехозащищенности каналов связи за счет современных методов кодирования и организации радиоканала. Хочется отметить средства Wireless MUX(такие как ILB BT ADIO MUX-OMNI), которые позволяют быстро разворачивать, к примеру, информационно-измерительные системы и системы мониторинга, вплоть до создания диагностических, мобильных комплексов для временного использования. Эффективную автоматизацию подвижных объектов АСУ ТП можно осуществить с помощью точки доступа Wireless LAN, FL WLAN 5100.

Omron

Японская компания Omron хорошо известна своим инновационным подходом, стремлением использовать новые технологии при создании новых систем. Этот принцип используется производителем и при создании решений беспроводной связи. Когда компания Omron выпустила беспроводное устройство DeviceNet WD30, оно получило широкое признание за реализацию возможностей промышленной шины (ранее доступных только в проводном варианте) для малых и средних дистанций беспроводной связи.

Затем компания Omron выпустила следующую модификацию беспроводного модема DeviceNet - WD30-01. Отличия по сравнению с существующим модемом WD30 могут показаться незначительными, но они существенно расширяют сферу применения этих блоков. Теперь антенны имеют магнитное основание и кабель длиной 2 метра. Это позволяет устанавливать блоки WD30 внутри корпуса, вынося антенну за его пределы, что обеспечивает более гибкое использование данного устройства.

О семействе WD30

Беспроводные устройства DeviceNet компании Omron позволяют устанавливать связь с любыми совместимыми с DeviceNet устройствами посредством полностью беспроводной промышленной шины. WD30 - это не просто устройство 1:1, расширяющее сеть. Одно беспроводное вeдyщeе устройство WD30 от Omron может обращаться к нескольким вeдомым устройствам.

В одной сети DeviceNet могут находиться несколько главных беспроводных устройств, образующих сложные гибкие конфигурации в одной системе.

Используемая технология

Беспроводные устройства DeviceNet объединяют в себе две новейшие технологии беспроводной связи: расширенный спектр и разнесенные антенны. Беспроводная связь основана на технологии DSSS (Расширенный спектр прямой последовательности) с разделением на 34 отдельных канала в диапазоне 2,4 ГГц. Эта частота во всем мире выделена для использования в промышленности, науке и медицине (ISM). Использование технологии расширенного спектра уменьшает влияние помех, обеспечивая прохождение сообщения с первого раза.

Во всех приемопередатчиках DeviceNet используется система спаренных антенн. Она измеряет выходной сигнал устройства, вычисляя разницу между сигналом и его отражениями. Приемопередатчик автоматически выбирает антенну с наилучшим качеством сигнала для уменьшения помех.

Беспроводные устройства DeviceNet компании Omron были первыми серийными беспроводными устройствами, объединяющими эти технологии.

Широкий спектр применений

Из-за характеристик кабелей, требования к топологии кабелей DeviceNet обычно ограничивают длину промежуточных звеньев сети шестью метрами. Однако в некоторых системах требуется заметно бо льшая длина кабелей. Теперь беспроводная сеть DeviceNet компании Omron позволяет передавать данные в узлы DeviceNet на расстояние до 60 метров от магистральной линии.

Низкая выходная мощность (10 мВт) минимизирует радиочастотные помехи в других устройствах. Высокая рабочая частота снижает возможность появления электрического шума в заводском цехе из-за интерференции с сигналами беспроводных устройств DeviceNet. В беспроводных устройствах DeviceNet дополнительно реализована встроенная функция защиты, не позволяющая другим пользователям изменять параметры без знания кодов. Процедура настройки представляет собой установку определенной комбинации положений переключателей, которую трудно повторить. Изменение положений переключателей не изменяет конфигурацию устройства.

Вeдyщие и вeдомые устройства WD30 снабжены стандартным миниатюрным разъемом DeviceNet, что расширяет возможности применения DeviceNet в производственных помещениях. К таким применениям относятся: транспортировка материалов, конвейерные системы, линии сборки, робокары и движущееся оборудование, где использование проводов нецелесообразно. Для беспроводных устройств DeviceNet требуется другой набор навыков, несколько больший объем знаний и более интенсивное обучение.

Среди преимуществ беспроводных решений этого производителя отметим многолетнюю надежную эксплуатацию радиомодемов (сети DeviceNet) в промышленных цехах, насыщенных разнообразным помехогенерирующим оборудованием, таим как регуляторы на основе отсечки напряжения и тока, частотные преобразователи и т.д.

Беспроводные устройства Omron DeviceNet WD30-01

Siemens

Возможности беспроводных сетей реализованы в промышленных системах связи (IMC - Industrial Mobile Communication), построенных на соответствующих компонентах SIMATIC NET, которые базируются на общепризнанных мировых стандартах - IEEE 802.11, GSM, GPRS и UMTS.

IMC охватывает программные и аппаратные компоненты SI-MATIC NET, обеспечивающие возможность обмена данными через беспроводные каналы связи сетей Industrial Ethernet и PROFIBUS. Компоненты SIMATIC NET могут быть использованы для построения системы связи всей компании — от подключе-ния к сети простейшего устройства до организации интенсивного обмена данными между сложными системами. Точки доступа IWLAN (Industrial Wireless Local Area Network) се-мейства SIMATIC NET способны поддерживать обмен со все-ми мобильными устройствами, отвечающими требованиям стандартов IEEE 802.11 a, b, g, h.

Семейство SCALANCE W

Семейство SCALANCE W объединяет в своем составе целый ряд коммуникационных модулей, предназначенных для по-строения высоконадежных IWLAN с детерминированным временем передачи данных и поддержкой резервированных каналов связи.

Такие беспроводные сети позволяют переда-вать через свои каналы как критичные к времени передачи со-общения (например, IWLAN с передачей аварийных сообще-ний), так и обычные сообщения (например, WLAN с переда-чей сервисных и диагностических сообщений). В целом, по-добные сети по своим функциональным возможностям пере-крывают требования стандарта IEEE 802.11.

Модули SCALANCE W выпускаются в прочных металличе-ских корпусах со степенью защиты IP65, обеспечивающих надежную защиту от влаги и пыли и возможность использова-ния модулей в условиях вибрации и тряски.

Все модули серии SCALANCE W поддерживают стандартные механизмы идентификации пользователей, обеспечивающие защиту IWLAN от несанкционированного доступа, а также механизмы кодирования передаваемых данных.

Промышленное исполнение

Модули SCALANCE W способны сохранять работоспособ-ность в диапазоне температур от -20°C до +60°C, подвергаться длительному воздействию влаги и пыли. Используемые в них антенны, блоки питания и соединительные кабели также ори-ентированы на эксплуатацию в промышленных условиях.

Примеры использования IWLAN

Возможна беспроводная интеграция сегментов PROFIBUS и PROFINET станций в существующую сеть Industrial Ethernet. Для этого к стационарной сети Industrial Ethernet подключается необходимое количество точек доступа SCALANCE W.

Точки доступа могут комплектоваться круговыми или направленными антен-нами, а также протяженными антеннами с низким уровнем излучения в виде RCoax-кабеля. Через точки доступа в систему беспроводной связи могут быть включены любые стационарные или мобильные объекты, оснащенные моду-лями клиентов или модулями IWLAN/PB Link PNIO.

Приведем пример реализации дистанционного конфигурирования аппаратуры на подвижных станциях. Мобильные станции свободно перемещаются в зоне ох-вата радио, образованной двумя точками доступа SCALANCE W788-1PRO. Каждая мобильная станция оснащена модулем клиента SCALANCE W746-1PRO. Обеспечивается поддержка беспроводного обмена данными панели оператора, компьюте-ра и программируемого контроллера каждой мобильной стан-ции с контроллером и системой человеко-машинного интерфейса стационарной сети Industrial Ethernet. Программатор Field PG M используется для дистанционного обслуживания всей аппаратуры данной системы.

В зоне охвата радио одной точки доступа SCALANCE W788-1PRO или SCALANCE W788-2PRO могут работать мобиль-ные станции с компонентами систем распределенного ввода/вывода PROFINET IO.

Программное обеспечение

Программный пакет SINEMA E со стандартной лицензией обеспечивает поддержку функций автоматического позиционирования компонентов инфраструктуры и оптимизации каналов связи, определяет не-обходимые типы точек доступа, оптимизирует значения пара-метров их настройки.

Поддерживаемые продукты:

  • Точки доступа WLAN: SCALANCE W788; W786; W784; HiPath AP2610, 2620, 2630, 2640; точки доступа по Wi-Fi 802.11 a/b/g/h.
  • Модули клиентов WLAN: SCALANCE W744; W746; W747; IWLAN/PB Link PNIO; модули клиентов по Wi-Fi 802.11 a/b/g/h.
  • Адаптеры LAN/WLAN для поддержки функций чтения/за-грузки: SIMATIC NET CP 1613 A2; CP 1612; стандартный LAN-адаптер; стандартная WLAN-карта.
  • Адаптер WLAN для выполнения измерений в WLAN; для измерений в стандартном режиме — стандартный WLAN адаптер; для усовершенствованного режима измерений — PCMCIA WLAN-адаптер.

Одним из преимуществ этого производителя является предложение комплектов беспроводных устройств, совместимых с наиболее популярными в промышленности ПЛК и системами Siemens, обеспечение помехоустойчивой и надежной связи для АСУ ТП в различных отраслях, включая транспортную.

Точка доступа Siemens SKALANCE W788-1PRO

Moxa

Компания Moxa разработала и производит большое количество решений для подключения различных промышленных устройств с интерфейсами на основе беспроводных технологий - IEEE 802.11 (WLAN) и GSM/GPRS/UMTS/HSDPA. Рассмотрим оборудование для организации прямых, локальных сетей без участия телекоммуникационных провайдеров (GSM, GPRS).

RISC-компьютеры с беспроводными интерфейсами

Встраиваемые компьютеры Moxa ThinkCore основаны на RISC-платформе и предназначены для создания пользовательских приложений для промышленной автоматизации. Они имеют программно выбираемый RS-232/422/485 последовательный порт, 802.11a/b/g интерфейс для WLAN-связи, SD слот, 2 USB и 1 Ethernet-порт. Moxa ART, 32-битный процессор ARM9, и встроенная ОС Linux обеспечивают мощную и надежную платформу для промышленных сред с жесткими условиями, а также являются являются удачным решением для промышленных приложений M2M: обмен данными, преобразование протоколов и дистанционное управление устройствами и их проверка.

В Украину поставляются такие модели: Moxa ThinkCore W311 (RISC-базирующийся встраиваемый компьютер с WLAN, 1 последовательным портом, LAN, ОС Linux); Moxa ThinkCore W321 (RISC-компьютер с WLAN, 2 последовательными портами, LAN, SD и ОС Linux). Moxa ThinkCore W341 (RISC-компьютер с WLAN, 4 последовательными портами, LAN, SD, USB, релейными выходами, ОС Linux).

RISC-компьютеры с многофункциональными беспроводными интерфейсами

Компьютеры серии Moxa ThinkCore W311 UC-8481 имеют 2 RS-232/422/485 последовательных порта, 2 Ethernet-порта, 4 цифровых входа и выхода, CompactFlash сокет и 2 порта USB 2.0. Moxa ThinkCore W311 UC-8481 базируются на Intel XScale IXP435 533 MHz RISC-процессоре. Компьютер имеет большие вычислительные и коммуникационные возможности при очень малом тепловыделении.

Moxa ThinkCore W311 UC-8481 имеет семь разъемов, что позволяет пользователям подключать различные беспроводные модули и GPS - это очень важно, например, для применения на железной дороге и вообще, на движущихся транспортных средствах. Moxa предлагает также модель с расширенным диапазоном рабочих температур, от -25°C до 70 °C - для промышленных сред с жесткими условиями.

Встраиваемый компьютер Moxa ThinkCore W311 UC-8481

Беспроводные контроллеры доступа

Индустриальные контроллеры беспроводного доступа WAC-1001 снабжены технологией Moxa Turbo Roaming, которая резко сокращает время роуминга для беспроводных устройств - до 50 мс. Эта передовая функция обеспечивает высокую скорость переключения и «бесшовное» соединение, без обрывов связи и нарушения безопасности беспроводных коммуникаций даже в чрезвычайно сложных условиях. Также устройства характеризуются поддержкой IEEE802.11i (беспроводная безопасность) и широким диапазоном рабочих температур: -40°C до 75°C.

Беспроводные точки доступа (AP/Bridge/AP Client)

Moxa предлагает большое количество подобных устройств. Характерным примером является Moxa AWK-4131 - промышленная точка беспроводного доступа 3-в-1 (Access Point/Bridge/Client), которая позволяет обеспечить пользователям высокоскоростной, эффективный беспроводный доступ к сетевым ресурсам по технологии IEEE 802.11n с сетевой скоростью до 300 Mbps. Moxa AWK-4131 использует два соседних 20 МГц канала, объединяя их в один 40 МГц - для обеспечения большей надежности и высокой пропускной способности. Рабочий диапазон температур устройства составляет от -40°C до 75°C.

Moxa AWK-4131 имеет дублированный вход по питанию для повышения надежности оборудования, а также может получать питание по Ethernet (PoE). Высокочастотные модули Moxa AWK-4131 обеспечивают работу в двух диапазонах частот 2.4 и 5 GHz. Moxa AWK-4131 имеют обратную совместимость со стандартами IEEE 802.11a/b/g, что позволяет просто интегрировать их в уже существующую инфраструктуру. Корпус с защитой класса IP68 и специальные M12 соединители предохраняют устройство от критических условий окружающей среды (пыль, влага)

Беспроводные устройства доступа IEEE 802.11 (WLAN)

Типовым представителем этой группы оборудования является новая серия устройств MiiNePort W1 (Network Enabler) - модулей-серверов доступа Serial-Ethernet с поддержкой беспроводных сетей IEEE 802.11 b/g. Они обеспечивают очень простое подключение устройств с последовательным интерфейсом в беспроводные сети.

Moxa MiiNePort W1 обеспечивает скорость до 921.6 Kbps по последовательному порту и поддерживает большое число различных операционных модов: RealCOM, TCP Server, TCP Client, UDP, RFC2217, а так же Infrastructure Mode (b/g) и Ad-Hoc Mode (b/g) для беспроводных сетей IEEE 802.11 b/g. Качественная драйверная поддержка Moxa MiiNePort W1 обеспечивает простоту внедрения модулей в уже существующие решения.

Moxa MiiNePort W1 имеет очень компактный размер: 44.4 x 44.4 x 9.7 мм, а также экстремально низкое потребление (360 mA для 3.3 VDC, 290 mA для 5 VDC), что позволяет легко интегрировать его в различные устройства с последовательным интерфейсом для подключения их к беспроводным сетям.

Устройство доступа Serial-Ethernet Moxa MiiNePort W1

WLAN-антенны

Moxa предлагает широкий выбор антенн в различных диапазонах частот (2,4; 5 ГГц) и диаграмм направленности, от круговых до направленных. Диапазоны усиления: от 5 до 18 dBi.

Беспроводное оборудование от Moxa широко используется при создании автоматизированных систем технического учета, распределенных систем мониторинга и измерения технологических параметров в пищевой, бумажной, химической промышленностях, машиностроении и т.д.

Устройства Moxa хорошо проявляют себя в построении разветвленных, локально распределенных информационно-измерительных и диспетчерских систем, что является одним из их ключевых преимуществ.

О средствах беспроводной передачи данных в системах автоматизации зданий вы сможете прочитать во 2-й части обзора, которая будет опубликована в июле.

Обзор беспроводных технологий связи

В настоящее время технология беспроводной связи переживает настоящий бум своего развития. В основном это связано с прочным входом в нашу жизнь смартфонов, планшетных компьютеров и нетбуков, которые для полноценного использования требуют постоянный доступ к сети интернет, в том числе и при движении.

Кроме этого, в промышленности, сельском хозяйстве ну и естественно в военной сфере назревает необходимость в организации надежных систем управления распределенными объектами и объединение их в глобальную сеть. Подобные тенденции наблюдаются во всем мире и ведут к неминуемому развитию беспроводных технологий связи.

Подтверждению этому служит огромное количество статей и аналитических обзоров, которые выдаются в поисковых системах по запросу сетецентрические технологии и системы.

Термин сетецентризм подразумевает под собой наличие единого информационного пространства, максимизации ситуационной осведомлённости всех входящих в него абонентов и непрерывности взаимодействия. Что естественным образов подразумевает под собой кардинальный пересмотр отношения к системам связи, в том числе и к беспроводным связям, что неминуемо ведет к их активному развитию и совершенствованию.

В этой статье я проведу краткий обзор существующих коммерческих технологий и стандартов беспроводной связи. Чтобы было проще ориентироваться в большой номенклатуре технологий, введем классификацию по дальности связи и количеству абонентов входящих в беспроводную сеть. Всего введем шесть градации:

1. К персональным беспроводным сетям относятся:

IrDA (Infrared Data Association) , инфракрасный порт – группа стандартов, описывающих протоколы физического и логического уровня передачи данных по оптической линии связи с использованием инфракрасного диапазона световых волн. Сейчас ИК-порты в основном используются в пультах управления. В телефонах, смартфонах, ноутбуках и в другой вычислительной технике их вытеснили такие беспроводные линии связи, как Bluetooth, Wi-Fi и т.д. из-за маленькой дальности, возможности передачи данных только при прямой видимости приемника и передатчика и других особенностей устройства ИК-портов.

Bluetooth – спецификация радиосвязи малого радиуса действия (обычно до 200 метров) в диапазоне частот свободном от лицензирования (ISM-диапазоне: 2,4-2,4835 ГГц). В основу радиосвязи Bluetooth положен алгоритм FHSS (Frequency Hopping Spread Spectrum) обеспечивающий псевдослучайную перестройку частот 1600 раз в секунду (раз в 625 Мкс). Для перестройки доступно 79 рабочих частот в диапазоне 1 МГц. В некоторых странах количество выделяемых частот уже, так в Японии, Франции и Испании – 23 частотных канала. Последовательность переключения частот знают только передатчик и приемник, входящие в одну и ту же сеть, которые синхронно переключают рабочие частоты. Для другой пары приемник-передатчик последовательность переключения будет отличаться. Благодаря этому возможна одновременная работа нескольких пар приемник-передатчик в перекрывающихся областях передачи данных.

UWB (Ultra-Wide Band) – технология беспроводной связи на малых дальностях (около 10 метров), использующая на сегодняшней день (01.09.2012) самый широкий диапазон частот для коммерческих устройств связи. Так в США выделен диапазон от 3.1 до 10.6 ГГц, в Евросоюзе от 6 до 8 ГГц, в России от 2,85 до 10 ГГц. Большие проблемы на пути становления этой технологии связаны с пересечением диапазона частот с частотами многих военных и гражданских радаров и других изделий. Однако, благодаря сверхмалой дальности связи и использования малой мощности, сигналы устройств созданных на базе технологии UWB не сказываются на работе военной и гражданской технике использующей те же диапазоны частот. Использование широкого диапазона частот позволяет достичь огромных скоростей, однако скорость очень быстро падает с увеличением дальности. Так на дальности 3 м обеспечивается скорость до 480 Мбит/с. На дальности 10 метров скорость будет уже 110 Мбит/с. Такое большое снижение скорости связано с большим искажением широкополосного сигнала за счет дисперсии электромагнитного изучения.

Wireless USB , беспроводной USB – предназначен для замены проводного USB. Основная задача WUSB обеспечение высокоскоростного обмена на сверхмалых расстояниях и обеспечение взаимодействия персонального компьютера с периферийным оборудованием: сканерами, принтерами, видео и фото камерами, внешними жесткими дисками и так далее. Высокая скорость (до 180 Мбит/с) обеспечивается на расстояниях до 10 метров и критически сильно падает при увеличении расстояния между приемником и передатчиком. Высокая скорость обеспечивается за счет применения широкополосного сигнала по технологии UWB, им же объясняется и малые расстояния передачи данных.

Wireless HD – беспроводная технология передачи данных, в основном предназначенная для передачи HD-видео, однако ничего не мешает использовать ее для организации беспроводной сети. Теоретическая максимальная пропускная способность Wireless HD может достигать 28 Гбит/с на расстоянии до 10 Метров. Столь большую пропускную способность обеспечивает работа с широкополосным сигналом (7 ГГц) при частоте сигнала в районе 60 ГГц. Однако это приносит и существенные проблемы: для передачи сигнала на частоте в районе 60 ГГц требуется, чтобы приемник и передатчик находились в зоне прямой видимости друг-друга, иначе предметы, попавшие между ними, будут прерывать сигнал и передача будет неустойчивой.
Для обеспечения стабильной связи в помещениях, где далеко не всегда есть возможность располагать устройства в зоне прямой видимости, разработчики приложили немало усилий и значительно смягчили жесткие ограничения передачи данных на сверхвысоких частотах. В основном это было обеспечено за счет ввода распределенной системы антенн, которые образуют сеть, позволяющую поддерживать стабильную передачу данных.

WiGig (IEEE 802.11ad.) – технология широкополосной беспроводной связи, работающая в нелицензируемой полосе частот 60 ГГц и обеспечивающая передачу данных до 7 Гбит/с на расстояния до 10 метров. WiGig обратно совместим со стандартом Wi-Fi (IEEE 802.11).
Использование для передачи данных диапазона частот в районе 60 ГГц приводит к быстрому затуханию сигнала и необходимости обеспечения прямой видимости между приемником и передатчиком. Для уменьшения влияния негативных эффектов в WiGig используется узконаправленная передача сигнала, что требует дополнительного времени для установки связи (до нескольких секунд). Если установить связь в зоне прямой видимости не удалось, то технология предусматривает возможность передачи данных на пониженных частотах - 2,4 и 5 ГГц.

WHDi, Wireless Home Digital Interface (Amimon) – беспроводная технология передачи данных, используемая для высокоскоростной передачи данных и оптимизированная для передачи видео высокого разрешения. Технология WHDi позволяет, например, связывать компьютер или ноутбук с монитором без проводов.
Для передачи используется частотный диапазон 5 ГГц обеспечивающий скорость 3 ГБит/с. В WHDi используется специальная технология кодирования «video-modem» обеспечивающая помехозащищенность и защиту от ошибок передачи данных, и как результат высокое качество ретранслируемого видео.

LibertyLink – технология организации беспроводной персональной сети, разработанная компанией Aura. Для передачи информации используется эффект магнитной индукции. Вокруг передатчика образуется магнитное поле, модулированное за счет использования Гауссовского смещения. Приемник, находящийся в магнитном поле, чувствителен к его модуляциям, из-за которых возникает наведенный ток. Изменения силы тока, возникающего в приемнике, преобразуются в данные. Технология LibertyLink позволяет передавать данные со скоростью до ~200 Кб/с на дальности до 3 метров.

DECT/GAP – цифровая усовершенствованная система беспроводной телефонии -технология беспроводной связи, используемая в современных радиотелефонах. Для передачи данных используется частота 1880-1900 МГц в Европе и 1920-1930 МГц в США. Передача данных основывается на методе с использованием нескольких несущих и принципа множественного доступа с разделением времени. Канал разделяется на кадры длительностью 10 мс. Каждый кадр делится на 24 слота, каждый из которых может использоваться для передачи и приема данных. Обычно первые 12 слотов используются для передачи данных, а следующие 12 слотов – для приема. Использование технологии DECT/GAP позволяет получить качественную передачу голоса по беспроводному каналу связи, высокую помехозащищенность, безопасность и защиту от прослушивания, и все это при низком уровни излучения, безопасном для здоровья.

2. К беспроводным сенсорным сетям относятся:

DASH7 – стандарт организации беспроводных сенсорных сетей.
Сенсорная сеть – это сеть миниатюрных вычислительных устройств, снабженных сенсорными датчиками (например, датчиками температуры, давления, движения, освещенности и так далее), приемо-передатчиками сигнала и миниатюрным источником питания. Дальность беспроводной связи зависит от мощности передаваемого сигнала, и с увеличением дальности сильно падает пропускная способность линии связи. Так как сенсорная сеть под собой понимает использование миниатюрных автономных датчиков, то и мощность сигнала сильно ограничена, так как увеличение мощности ведет к сокращению срока автономной работы датчиков.
В стандарте DASH7 используется частота сигнала 433 МГц, находящаяся в нелецензируемом диапазоне частот. При передачи данных на расстояние до 2 км обеспечивается скорость 200 Кб/с. Технология DASH7 открытая и составляет серьезную конкуренцию патентованным технологиям организации беспроводных сенсорных сетей, таких как ZigBee или Z-Wave.

Z-Wave – технология беспроводной радиосвязи, используемая для организации сенсорных сетей. Основное назначения сетей Z-Wave - дистанционное управление бытовой техникой и различными домашними устройствами, обеспечивающими управление освещением, отоплением и другими устройствами для автоматизации управления жилыми домами и офисными помещениями.
Технология Z-Wave обеспечивает передачу данных на расстояние до 30 метров в условиях прямой видимости со скоростью 9,6 кбит/с или 40 кбит/с, при частотах 869.0 МГц в России, 908.42 МГц в США, 868.42 МГц в Европе и т.д.
Так как в домашних условиях и в условиях офиса невозможно обеспечить нахождения всех датчиков сети в прямой видимости друг друга, в стандарте Z-Wave каждый узел или устройство могут ретранслировать данные другим узлам. Таким образом, если требуется передать данные узлу, который находится вне зоны видимости, это можно сделать через цепочку узлов. Причем сети Z-Wave обладают элементами самоорганизации в зависимости от внешних факторов. Например, при возникновении преграды между двумя ближайшими узлами сети, сигнал будет автоматически передан через цыпочку других узлов сети.

Insteon – комбинированная (частично проводная и частично беспроводная) сенсорная сеть. Для передачи информации используется радиосигнал на частоте 902-924 МГц, обеспечивающий передачу данных на дальности до 45 метров в условиях прямой видимости со средней скоростью 180 бит/с. Для передачи информации по проводу используется электропроводка дома или офиса. Использование комбинированной сети повышает ее надежность и позволяет избежать проблем, связанных с помехами или перекрытиями зон видимости при передаче данных по радиоканалу. Сенсорная сеть Insteon обычно используется для автоматизации дома или офиса. Свое начало берет из США, где была создана для замены сенсорной сети Х10 и откуда перебралась в Европу.

EnOcean - технология организации беспроводных сенсорных сетей, использующая сверхминиатюрные датчики с генераторами электроэнергии, микроконтроллерами и приемо-передатчиками. Использование генераторов электроэнергии и элементов со сверхнизким энергопотреблением, позволяет элементам сети EnOcean работать автономно, практически без элементов питания, очень длительный период времени. Сети EnOcean в основном используются для автоматизации домов и офисов. Технология EnOcean позволяет передавать данные на частоте 868 МГц (для Европы, в других странах частота может отличаться, так как это лицензируемый диапазон частот) со скоростью 120 Кбит/с на расстояния до 300 метров в пределах прямой видимости. Естественно, в помещениях этот показатель значительно меньше и зависит от материалов стен и планировки здания. Каждый элемент сети имеет свой 32-х разрядный идентификационный номер и протокол обмена, защищающий от взаимных помех соседние датчики, что позволяет устанавливать до 4 миллиардов устройств в непосредственной близости друг от друга (по данным с сайта разработчиков технологии) без взаимной интерференции.

ISA100.11a – стандарт организации промышленных сенсорных сетей, сетей датчиков и приводов. Для передачи используется низкоскоростная беспроводная связь с использованием элементов с низким энергопотреблением. Отличительная особенность ISA100.11a от других сенсорных сетей:
– ориентированность на промышленное использование и соответственно специфические требования к прочности, помехозащищенности, надежности и безопасности,
– возможность эмуляции средствами технологии ISA100.11a протоколов уже существующих и проверенных проводных и беспроводных сенсорных сетей.
Обмен данными осуществляется на частоте в районе 2,4 ГГц и скорости порядка 250 кбит/с.

WirelessHART – протокол передачи данных по беспроводной линии связи, разработанный HART Communication Foundation для передачи данных в виде HART сообщений в беспроводной среде. HART – протокол обмена данными для взаимодействия с полевыми датчиками на основе расширяемого набора простых команд «запрос-ответ», передаваемых в цифровом виде по 2-проводной линии. WirelessHART обеспечивает передачу данных со скоростью до 250 кбит/с на расстояние до 200 м (в пределах прямой видимости) при частоте передачи данных в диапазоне 2.4 ГГц.

MiWi – протокол для организации сенсорных и персональных сетей с низкой скоростью передачи данных на небольшие расстояния, основанный на спецификации IEEE802.15.4 для беспроводных персональных сетей. Сеть на базе MiWi может содержать до 1024 узлов, управляемых до 8 координаторами. Каждый координатор может обеспечивать взаимодействие до 127 узлов. Передача данных ведется в диапазоне частот 2.4 ГГц (предусмотрена работа в диапазоне частот 868 МГц и 915 МГц с более низкими скоростями) при скорости до 250 Кб/с.

6LoWPAN – стандарт, обеспечивающий взаимодействие малых беспроводных сетей (частных сетей или сетей датчиков) с сетями IP по протоколу IPv6. Используется в основном для организации сетей датчиков и автоматизации жилого и офисного помещения с возможностью управления через интернет, однако могут использоваться и автономно как простые беспроводные сети датчиков. Передача данных в стандарте 6LoWPAN подразумевает использование субгигагерцового диапазона и обеспечивает скорость передачи от 50 до 200 кбит/с на расстояние до 800 метров.

One-Net – открытый протокол для организации беспроводных сенсорных сетей и сетей автоматизации зданий и распределенных объектов. Позволяет организовывать сети, включающие в себя до 4096 узлов с несколькими координаторами и ретрансляторами, увеличивающими дальность передачи данных. Передача данных обеспечивается на расстояния до 100 метрах в помещении и до 500 метрах на открытых пространствах при скорости передачи данных 28.4 – 230 Кбит/с.

Wavenis – беспроводная технология передачи данных, использующая частоты 433/868/915 МГц и обеспечивающая передачу на расстояние до 1000 м на открытом пространстве и до 200 м в помещении при скорости до 100 Кбит/с. Технологию Wavenis используют для организации персональных сетей и сетей датчиков, так как сверхнизкое потребление приемо-передающих устройств позволяет им работать автономно до 15 лет от одной батарейки.

RuBee – локальная беспроводная сеть, которая, в основном, используется как сеть датчиков. Для передачи данных в RuBee используются магнитные волны, и передача осуществляется на частоте 131 КГц, что обеспечивает скорость всего лишь 1200 бот в секунду на расстояниях от 1 до 30 метров. Однако позволяет значительно снизить энергопотребление и позволяет узлам сети работать автономно в течении нескольких лет от одной батарейки.
Используется сеть, в основном, для специфических целей, не требующих большого быстродействия, но требующих долгой автономной работы и надежной, защищенной связи. Использование низкой частоты позволяет избежать проблем связанных с передачей данных в помещениях, так как сигнал не отражается и не блокируется стенами и другими предметами. Сеть RuBee в США сертифицирована Министерством Обороны и Министерством Энергетики и рекомендована для использования в объектах повышенной опасности.

3. К малым локальным беспроводным сетям относятся:

HiperLAN (High Performance Radio LAN) – стандарт беспроводной связи. Существует две ревизии стандарта: HiperLAN 1 и HiperLAN 2. Стандарт HiperLAN 1 выпущен 1981 году и описывает более медленную линию связи, обеспечивающую скорость передачи данных до 10Мбит/с на расстоянии до 50 метров. В данной ревизии использовался асинхронный режим передачи и механизм множественного доступа, аналогичный используемому в семействе локальных сетей шинного типа со случайным доступом с предотвращением конфликтов.
Выпущенная в 2000 году ревизия стандарта уже описывает более высокоскоростную беспроводную линию передачи данных. HiperLAN 2 использует для передачи данных широкополосный сигнал на частоте в районе 5 ГГц, обеспечивающий скорость передачи данных до 54 Мбит/с на расстоянии до 150 метров. При этом обе ревизии позволяют работать с мобильными объектами, передвигающимися со скоростью до 1.4 м/с (ревизия HiperLAN 1) и до 10 м/с (ревизия HiperLAN 2).

Wi-Fi – торговая марка объединения Wi-Fi Alliance, представляющая собой семейство стандартов спецификации IEEE 802.11 для широкополосной радиосвязи. В зависимости от стандарта, Wi-Fi использует для передачи данных диапазон частот в районе 2,4 ГГц или 5 ГГц и обеспечивает скорость передачи данных от 2 Мбит/с на расстояниях до 200 метров. Wi-Fi используется для организации беспроводных локальных сетей и беспроводного подключения к Интернету. Wi-Fi одна из самых популярных групп стандартов и повсеместно используется для организации домашних и офисных сетей, публичного доступа к Интернету в гостиницах, кафе, магазинах и в других публичных местах.

Zigbee – технология организации беспроводных сенсорных и персональных сетей. Технология Zigbee обеспечивает невысокое потребление энергии и передачу данных на нелецензируемой частоте 2.4 ГГц (для различных стран частота может отличаться) со скоростью до 250 Кб/с, на расстояние до 75 метров в условиях прямой видимости. Поддерживаются как простые сети типа точка-точка и звезда, так и сложные сети с ретрансляцией и автоматической маршрутизацией, позволяющие передавать данные между двумя узлами, находящимися не в зоне прямой видимости, через цепочку узлов сети.
Сети Zigbee используются как для коммутации отдельных устройств, например, беспроводных наушников или колонок с компьютером или смартфоном, так и для организации сложных сетей по автоматизации управления домом и офисом.

RONJA (Reasonable Optical Near Joint Access) – технология беспроводной передачи данных с использованием оптического сигнала. Используется для организации полнодуплексных соединений тип точка - точка по стандарту Ethernet, обеспечивая скорость передачи данных до 10 Мбит/с на расстоянии до 1.4 км при примой видимости абонентов. При сложных погодных условиях (снег, дождь, туман) дальность и скорость связи значительно падает, и могут возникать сбои при передаче данных.

4. К большим локальным беспроводным сетям относятся:

WiMAX (Worldwide Interoperability for Microwave Access) – беспроводная технология передачи данных основанная на стандарте IEEE 802.16. Основное назначение технологии – это высокоскоростная связь на больших расстояний и предоставление доступа в интернет. Существует две ревизии WiMAX, одна из которых (собственно WiMAX) основана на стандарте IEEE 802.16d, а вторая (WiMAX Mobile) основана на стандарте IEEE 802.16e. В разработке находится третья ревизия - WiMax 2, которая будет значительно опережать по скорости и дальности связи первые две ревизии.
WiMAX осуществляет передачу данных на частоте 1,5-11 ГГц со скоростью до 75 Мбит/с на расстояние до 80 км. WiMAX Mobile осуществляет передачу данных на частоте 2,3-13,6 ГГц со скоростью до 40 Мбит/с на расстояние до 5 км. Подробнее об устройстве и принципах работы WiMAX (Worldwide Interoperability for Microwave Access) можно почитать на сайте "Системы и сети" (systemseti.com).

HiperMAN - беспроводная технология передачи данных на базе стандарте IEEE 802.16. Европейская альтернатива технологии WiMAX. HiperMAN специализирован для пакетной передачи данных и организации беспроводных IP-сетей. Имеет характеристики (диапазон частот, скорость и дальность передачи данных) схожие с технологией WiMAX.

WiBro (Wireless Broadband) – беспроводная технология высокоскоростной передачи данных на большие расстояния, основанная на стандарте IEEE 802.16e. Северокорейский аналог технологии WiMAX Mobile. Для передачи данных используется диапазон частот 2,3-13,6 ГГц, при этом в Северной Корее выделен диапазон 2,3-2,4 ГГц. Максимальная пропускная способность базовых станций составляет 30-50 Мбит/с на дальностях до 5 км при движении объекта со скоростью меньше 120 км/ч.

Classic WaveLAN – технология беспроводной связи используемая для организации локальных сетей (беспроводная альтернатива проводных сетей Ethernet и Token Ring). Передача данных осуществляете в диапазоне частот в 900 МГц или 2.4 ГГц, при этом обеспечивается скорость передачи до 2 Мбит/с.

5. К глобальным беспроводным сетям относятся:

5.1. Мобильная связь поколения 1G

NMT (Nordic Mobile Telephone) – стандарт беспроводной аналоговой сотовой связи, разработанный в 1978 году, однако он и по сей день используется в России, имея покрытие сравнимое с суммарным покрытием всех остальных стандартов сотовой связи. NMT обеспечивает множественный доступ абонентов с частотным разделением на расстояниях свыше 70 км от базовой станции.
Передача сигнала осуществляется в диапазоне частот 450 МГц. При этом для передачи данных от абонента используется диапазон частот 453-457,5 МГц, а для приема данных от базовой станции используется диапазон 463-467,5 МГц. Внутри этих диапазонах используется нарезка на каналы с шагом 12.5 КГц.
Использование частоты в диапазоне 450 МГц приводит к большому количеству помех в больших городах, но большая дальность связи позволяет получить хорошую связь в пригородах и вдали от городов.

AMPS (Advanced Mobile Phone System) - стандарт беспроводной аналоговой сотовой связи используемый с 1983 года. Впервые был применен в США, сейчас используется во многих европейских странах, в том числе и в России (компания Билайн). AMPS обеспечивает множественный доступ абонентов с частотным разделением. Так же как и в стандарте NMT для передачи и для приема данных используются отдельные диапазоны частот, которые нарезаются на каналы (один канал – 30КГц). Всего поддерживается 832 канала. Схема построения сети очень похожа на схему сети GSM, в которой используется сеть базовых станций, размещенных в углах сот, и центров коммутации.

TACS (Total Access Control System) – аналоговая система беспроводной связи, разработанная на базе стандарта AMPS и используемая с 1985 года. Первая сеть была развернута в Англии, затем TACS стали использовать в таких странах как Испания, Ирландия, Австралия, Кении, Кувейте, Малайзии и в некоторых других. С мая 2001 года не используется. В системе TACS использовалась частотная модуляция (FSK). Для передачи от базовой станции использовалась полоса частот 935-950 МГц, для передачи от абонента – 890 - 905 МГц. Общее число каналов 600, с разнос в 25 кГц. Радиус действия одной базовой станции до 20 км. Система связи TACS несколько раз улучшалась. Были введены модификации ETACS, NTACS увеличивающие диапазон частот и число каналов, что позволяло увеличить число одновременно обслуживаемых абонентов и качество связи.

Mobitex – открытый стандарт беспроводной связи на основе коммутации пакетов. Сеть состоит из базовых станций и коммутаторов и представляет собой сотовую сеть для передачи данных и голоса, однако в стандарте Mobitex возможна и коммутация точка-точка между двумя абонентами минуя базовые станции, если они находятся в радиусе действия абонентской аппаратуры. Это несколько разгружает сеть. Для передачи используются диапазоны частот в районе 80, 400, 800 или 900 МГц. Теоретическая максимальная пропускная способность сети - 8 Кбайт/с. Эффективная пропускная способность значительно ниже и зависит от длинны сообщений, загруженности каналов связи и т.д. и в среднем составляет порядка 2 Кбит/с. Разработана в середине 80-х годов. Используется в 23 странах, однако она менее популярна, чем сотовые сети GSM и используется в основном группами быстрого реагирования, пожарными, военными, полицией и т.д.

DataTAC – открытый стандарт беспроводной низкоскоростной связи на основе коммутации пакетов, схож по построение со стандартом Mobitex. Для передачи обычно используется диапазон частот в районе 800 МГц, при этом обеспечивается скорость до 19,2 Кбит/с. В основном используется для передачи данных, например на основе DataTAC организованы пейджинговые сети в Канаде.

5.2. Мобильная связь поколения 2G

GSM (Global System for Mobile Communications) – наиболее распространенный на сегодняшний день (октябрь 2012) стандарт беспроводной цифровой сотовой мобильной связи. Стандарт относится к поколению 2G и обеспечивает разделение каналов по времени и частоте. Передача данных в стандарте возможна в четырех диапазонах частот 450 МГц, 900 МГц, 1800 МГц, 1900 МГц. Используемый диапазон частот зависит от типа телефона и региона в котором он применяется. Многие телефоны одновременно поддерживают несколько диапазонов, есть и такие, которые поддерживают все четыре возможных диапазона.
Сеть GSM состоит из базовых станций, центров коммуникаций и собственно абонентов – подвижных мобильных станций или просто говоря сотовых телефонов. Базовые станции располагаются в вершинах равносторонних шестиугольников, покрывая шестиугольниками все пространство, в котором должна обеспечиваться сотовая связь. Если посмотреть на схему расположения базовых станций, то она будет напоминать пчелиные соты. Диаметр каждый шестиугольной ячейки (круга в который вписан равносторонний шестиугольник) может доходить до 50 км. Теоретически диаметр может достигать 120 км, но для этого требуются специальные усилители и качество связи может быть неприемлемым.
Абонент передает данные через одну из базовых станции, которая в свою очередь ретранслируют данные через сеть базовых станций к другому абоненту, при этом при переходе абонента из одной ячейки в другую работа с новой базовой станцией обеспечивается без разрыва связи.
Центры коммуникаций обеспечивают взаимодействие между абонентами, устанавливая соединения, и обеспечивают взаимодействие между другими системами радиосвязи.

TDMA (Time Division Multiple Access) – стандарт сотовой беспроводной связи основанный на множественном доступе с разделением по времени. То есть все абоненты сети базирующееся на стандарте TDMA работают в одном диапазоне частот, но при этом каждому абоненту выделяют определенный временной слот, в котором разрешено вещание. Поочередно такой слой выделяют всем активным абонентам, циклически повторяя этот процесс. С увеличением количества активных абонентов снижается пропускная способность канала. Сети на базе TDMA очень популярны и используются более чем в 70 странах мира и продолжают развиваться, занимая второе место по популярности после сетей GSM.

PDC (Personal Digital Cellular) – стандарт, основанный на базе стандарта TDMA и используемый только в Японии. В эксплуатации с 1993 года. Передача сигнала от базовой станции к абоненту осуществляется на частоте 810-888 МГц, а от абонента к базовой станции на частоте 893-958 МГц или на частоте 1477–1501 МГц и1429–1453 МГц соответственно. Ширина одного канала – 25 КГц. Скорость передачи данных составляет 11.2 Кбит/с в трехслотовом варианте стандарта и 5.6 Кбит/с в шестислотовом варианте. Стандарт быстро вытесняется мобильной связью третьего поколения, и 31 марта 2012 года был остановлен последний сервис, использующий этот стандарт.

DAMPS – стандарт цифровой беспроводной мобильной связи с множественным доступом с разделением времени (TDMA) и частотным разделением (FDMA). Для передачи использовались частоты в диапазоне от 825 МГц до 890 МГц. Ширина одного канала для передачи данных - 30 КГц. Последние модификации стандарта по своим возможностям приближались к стандарту GSM, однако на данный момент во всем мире наблюдается переход к более быстрым и емким сетям, обеспечивающим высокоскоростной доступ в интернет, возможность ведения видеоконференций и т.д. Так что этот стандарт активно вытесняется. Например, в России диапазон частот, занимаемый этим стандартом, выделен для цифрового телевидения и с 2010 года сети стандарта DAMPS отключаются. Последняя такая сеть была отключена в октябре 2012 года.

iDEN (integrated Digital Enhanced Network) – технология беспроводной связи разработанная компанией Motorolla в середине девяностых годов. Технология основана на сети GSM и не требует установки дополнительного оборудования, кроме центральных блоков управления. Достаточно установить дополнительное программное обеспечение на базовые станции сети GSM. В основе iDEN лежит стандарт TDMA (Time Division Multiple Access) - множественный доступ с разделение по времени. Передача осуществляется в диапазоне частот 806-825/851-870 МГц, который нарезан на каналы шириной 25 КГц. Данные в канале передаются интервалами по 90 мс. Таким образом, несколько абонентов одновременно могут общаться не только в разных частотных каналах, но и на одном канале, поочередно используя его. Пропускная способность канала достигает 64 Кбит/с. Для передачи голоса используется система кодирования на базе алгоритма VSELP, позволяющая получить качественный звуковой сигнал при небольших нагрузках на канал связи.

5.3. Мобильная связь поколения 2.5G

GPRS (General Packet Radio Service) – технология пакетной радиосвязи, являющаяся надстройкой над стандартом беспроводной цифровой сотовой мобильной связи GSM. При использовании технологии GPRS данные собираются в пакеты, и только затем передается, при этом максимальная теоретическая скорость может достигать 171,2 кбит/с при средней в 50-60 кбит/с, в отличии от GSM сети, обеспечивающей максимум 14,4 Кбит/с. В основном GPRS используется для передачи данных между устройствами в сети GSM и доступа к сети Internet.

EDGE (Enhanced Data rates for GSM Evolution) – технология беспроводной передачи данных для сотовой связи, используемая в качестве надстройки в GSM сетях. За счет улучшенного адаптивного алгоритма изменения подстройки модуляции и дополнительных алгоритмов контроля и исправления ошибок увеличивается скорость и надежность передачи данных и уменьшается восприимчивость к помехам. Так, при использовании технологии EDGE, обеспечивается средняя скорость порядка 75 - 130 Кбит/с. При этом, пиковая теоретическая скорость может достигать 474 кбит/с при пакетной передаче данных.

HC-SDMA (High Capacity Spatial Division Multiple Access) или iBurst – технология беспроводной широкополосной передачи данных. На данный момент технология обеспечивает скорость передачи данных до 1 Мбит/с для стационарных и мобильных объектов (двигающихся со скоростью до 110 км/ч). Принцип построения схож с сетями GSM, так же поддерживается роуминг между базовыми стациями и обеспечивается бесшовное (безразрывное) покрытие сети для мобильных абонентов. Однако за счет «умной» адаптивной антенной системы значительно эффективнее используется разделение ресурса сети между абонентами и повышается скорость передачи данных. На данный момент (октябрь 2012) iBurst используется в 13 странах: США, Канада, ЮАР, Азербайджан, Норвегия, Ирландия, Малайзия, Ливан, Кения, Танзания, Гана, Мозамбик, Демократическая Республика Конго. В России технология пока не применяется.

CDMA (Code Division Multiplie Access) – группа стандартов сотовой связи, находящиеся в промежуточном положении между вторым (2G) и третьем поколении(3G), так называемое поколение 2.5G. Стандарты CDMA используют метод множественного доступа с кодовым разделением, когда узкополосный сигнал модулируется псевдослучайной цифровой последовательностью, в результате чего получается шумоподобный широкополосный сигнал. При приеме сигнал демодулируется и получается исходный узкополосный сигнал. Модулируя сигнал разными последовательностями можно одновременно осуществлять радиосвязь с несколькими абонентами.

5.4. Мобильная связь поколения 3G

UMTS (Universal Mobile Telecommunications System) – технология сотовой связи третьего поколения (3G), использующая для связи технологию широкополосного множественного доступа с кодовым разделением (WCDMA). UMTS обеспечивает теоретическую пиковую скорость до 21 Мбит/с, однако на практике, на данный момент (конец 2012 года), скорость значительно ниже. Так, от базовой станции к абоненту обеспечивается скорость до 7,2 Мбит/с, а от абонента к базовой станции – всего лишь 384 Кбит/с. Но, в тоже время, это значительно больше, чем обеспечивается в сети второго поколения (2G) – GSM, в которой скорость едва достигает 14,4 Кбит/с. Для передачи данных используется два канал шириной 5 МГц в диапазоне 1885 МГц - 2025 МГц и 2110 МГц - 2200 МГц. Причем первый диапазон используется для передачи данных от абонента к базовой станции, а второй – от базовой станции к абоненту. Так как выделенные по стандарту диапазоны могут пересекаться с уже используемыми, то в некоторых странах они могут отличаться, например, в США используются диапазоны 1710 МГц - 1755 МГц и 2110 МГц - 2155 МГц.

WCDMA (Wideband Code Division Multiple Access) – широкополосной вариант стандарта CDMA с гибридной фазовой манипуляцией. Новый стандарт обеспечивает скорость до 2 Мбит/с для стационарных абонентов на небольших удалениях от базовой станции, и до 384 Кбит/с для мобильных объектов двигающихся с большой скоростью. Для трансляции данных в стандарте используется две полосы частот шириной 5 МГц, одна для приема данных от базовых станции, вторая для передачи. Использование широкой полосы, новых алгоритмов кодирования, нового голосового кодека (AMR) делает стандарт WCDMA более быстрым, качественным и надежным по сравнению со своим предшественником – CDMA.

CDMA 2000 дальнейшее развития стандарта беспроводной связи CDMA. CDMA 2000 состоит из нескольких ревизий: CDMA2000 1X, CDMA2000 1X EV-DO, CDMA2000 1X EV-DO Rev.A, CDMA2000 1X EV-DO Rev.B и других. CDMA2000 1X первый вариант стандарта. Он обеспечивал скорость до 153 кбит/с и относился к мобильной связи второго поколения. CDMA2000 1X EV-DO уже обеспечивал скорость до 2,4 Мбит/с при передачи данных от базовой станции к абоненту и до 153 кбит/с в обратном направлении и относился уже к поколению 3G. В ревизии CDMA2000 1X EV-DO Rev.A скорость передачи была еще увеличена и составила до 3,1 Мбит/с от базовой станции к абоненту и 1,8 Мбит/с обратно. В ревизии B скорости уже составили 4,9 Мбит/с и 2,4 Мбит/с, при этом была введена возможность объединения нескольких частотных каналов, что теоретически может обеспечить скорость 73,5 Мбит/с к абоненту и 27 Мбит/с от абонента. Группа стандартов получила очень широкое распространение и имеет множество модификаций отличающихся способами разделения канала, скоростью передачи, типом кодирования и т.д.

5.5. Мобильная связь поколения 3.5G

HSPA (High-Speed Packet Access) – технология беспроводной широкополосной (5 МГц) пакетной передачи данных, представляющая собой надстройку к мобильным сетям третьего поколения (WCDMA/UMTS) и позволяющая значительно увеличить их базовую скорость. Технология WCDMA позволяет получить теоретическую пиковую скорость от абонента к базовой станции до 5.7 Мбит/c, а от базовой станции к абоненту - 14.4 Мбит/с. На практике, скорости гораздо ниже и не только из-за загруженности сетей, но и из-за ограничений оборудования. Так многие абонентские устройства поддерживают максимальную скорость приема данных всего 7.2 Мбит/с. При дальнейшем усовершенствовании стандарта разработчиками заявлены скорости до 42 Мбит/с от базовой станции и до 12 Мбит/ от абонента.

5.6. Мобильная связь поколения 4G

LTE (Long-Term Evolution) – технология построения беспроводной сети нового поколения, принципиально отличающаяся от сотовых сетей поколения 2G и 3G. В сетях LTE используется технология коммутации пакетов и технология множественного доступа с ортогональным частотным разделением каналов (OFDMA) дающие кардинальные преимущества перед сетями предыдущего поколения с технологиями коммутации каналов и множественного доступа с кодовым разделением. Так теоретическая пропускная скорость от базовой станции к абоненту будет составлять до 300 Мбит/с, а от абонента к базовой станции - до 75 Мбит/с. Это позволит получить принципиально новое качество связи и позволит предоставлять ранее недоступные услуги: просмотр видео онлайн, многопользовательские онлайн игры, организации массовых видеоконференций, системы мониторинга и т.д.

5.7. Другие глобальные беспроводные сети

MMDS (Multichannel Multipoint Distribution System) – беспроводная технология передачи данных, используемая для организации телевещания. Сигнал передается в диапазоне частот 2686-2500 МГц, что обеспечивает ширину канала в 186 МГц и позволяет одновременно передавать до 24 аналоговых каналов (в России используется 8 Мгц на один аналоговый канал). По современным меркам количество каналов небольшое, да и в России перестали выдавать лицензии на вещание в диапазоне частот 2,5-2,7 ГГц, но до сих пор существует несколько вещательных центров MMDS. Изначально MMDS обеспечивает одностороннюю связь (только передачу телевизионного сигнала), однако можно настроить и двухсторонний обмен, но это требует дополнительных затрат, сравнимых с затратами на основную организацию передачи данных, и значительно уменьшает пропускную способность сети.

6. К спутниковой связи относится:

Inmarsat – система спутниковой связи, разработанная в 1979 году и используемая по сей день, для организации связи в удаленных малонаселенных областях, на морском транспорте, для определения положения абонентов, передачи данных и т.д. Это первая система общедоступной мобильной спутниковой связи. Спутниковая группировка системы Inmarsat состоит из девяти спутников, расположенных на геостационарной орбите (из которых 4 основные, а 5 резервные) и обеспечивающих покрытие практически всего земного шара, за исключением полюсов. Вещания спутников осуществляется в диапазоне частот 1.5 ГГЦ на передачу от спутника и 1.6 ГГц на передачу к спутнику. Более подробно диапазон частот, скорость передачи, кодирование и так далее описаны в стандартах, коих на данный момент насчитывается более шести: Inmarsat-A, Inmarsat-C, Inmarsat-D/D+, Inmarsat-M, Inmarsat-phone mini-M, Inmarsat-M4 и др.

Global Star – спутниковая система связи, предназначенная для организации спутниковой связи совместно со стандартными сотовыми сетями, дополняя их и обеспечивая связь с труднодоступными регионами земного шара. Система Global Star состоит из 48 основных и 4 резервных низкоорбитальных спутников, находящихся на круговых орбитах на высоте примерно 1414 км. Система Global Star обеспечивает покрытие земли от 70° южной широты до 70° северной широты. Так же в состав Global Star входят наземные сегменты, обеспечивающие взаимодействие терминалов абонентов с сотовыми сетями. При передачи данных или голоса сигнал от абонента, находящегося не в зоне действия сотовой сети, передается на спутник, откуда ретранслируется в ближайшую наземную станцию, где по стандартными сотовым сетям сигнал передается адресату.

Thuraya – региональная спутниковая система связи, разработанная компанией Boeing Satellite Systems и покрывающая примерно 40% земного шара (в основном Африку, Европу и Азию), в которую входит около 99 стран с общим населением порядка 2,5 миллиардов человек. При этом в состав системы входит всего 2 спутника, обеспечивающих одновременную передачу данных по 13,750 каналам. Основное назначение системы Thuraya - обеспечение спутниковой телефонной связи, причем терминалы абонентов по размеру сопоставимы с обыкновенными сотовыми телефонами и работают как в сотовых сетях, так и в спутниковой системе связи Thuraya. То есть, если абонент находится в зоне действия стандартной сотовой сети, то для трансляции разговора и данных будет использоваться сотовая сеть, как только абонент выйдет из зоны действия сотовой сети, включится режим передачи данных и голоса через спутники системы Thuraya. Так же с помощью сети спутников Thuraya можно определять положение абонента, т.е. использовать систему для навигации.

Iridium – спутниковая система свиязи состоящая из 66 низкоорбитальных спутников, обеспечивающих 100% покрытие Земли, однако в некоторых странах система не работает, например в Венгрии, Польше, Северной Корее и некоторых других странах. Система обеспечивает телефонную связь, передачу данных и коротких сообщений. Терминалы абонентов небольшого размера, сравнимого со стандартными сотовыми телефонами и обеспечивают автоматическое переключение между сотовой и спутниковой связью при выходе из зоны действия сотовых сетей и возвращения обратно.

ICO - система спутниковой связи, разработанная компанией ICO Global Communications и функционирующая с 2002-го года. Система спутниковой связи обеспечивает полнодуплексную передачу данных и голоса на скорости до 9,6 Кбит/с. Система ICO состоит из десяти спутников расположенных на орбите высотой около 10390 км. Терминалы абонентов по размеру и весу чуть больше сотового телефона.

Euteltracs – система спутниковой связи, основное назначение которой управление и контроль транспортными перевозками в Европе. По своей архитектуре и назначению Euteltracs сходyа с Американской спутниковой системой Omnitracs. Система Euteltracs основывается на передачи коротких (до 1900 символов) сообщений, включающих необходимые данные для организации транспортных перевозок. Система Euteltracs состоит из группировки спутников, наземной центральной станций, наземной станций маршрутизации и мобильных терминалов связи. Информационный обмен централизованный и осуществляется через наземную центральную станцию, расположенную во Франции. Одновременно возможно обслуживание 45000 единиц транспорта в 15 странах, в том числе и в России.

Omnitracs – спутниковая система связи для управления и контролем транспортных перевозок, разработанная в США и введенная в эксплуатацию в 1989 году. Назначение и устройство аналогичное спутниковой системы связи Euteltracs, используемой в Европе. Управление системой – централизованное и осуществляется из единого наземного центра управления, обрабатывающего ежедневно несколько миллионов сообщений.

Prodat - спутниковая система связи для наземных объектов. В системе используются алгоритмы и технологии позволяющие уменьшить влияние рельефа местности на качество передаваемого сигнала. Система находится в эксплуатации с 1992 года. Терминалы абонента весьма громоздкие и состоят из трех частей: внешнего блока со всенаправленной антенной диаметром более метра, блока связи и терминала пользователя размером с ноутбук.

Odyssey – спутниковая система связи, обеспечивающая покрытие от 65° южной широты до 75° северной широты и обеспечивающая практически круглосуточное вещание. Основные виду услуг Odyssey: речевая связь, передача коротких сообщений, электронной почты и определение местоположения абонентов. Однако погрешность определения координат очень большая (до 15 км) и значительно уступает спутниковым навигационным системам. Система Odyssey состоит из группировки спутников (12 спутников на средневысотной орбите, на высоте около 10354 км), наземных базовых станций и терминалов пользователей. Стоит отметить, что ретрансляции данных между спутниками невозможна, вся передача ведется через базовые станции.

ACeS (Asia Cellular System) – геостационарная, регионарная система спутниковой связи, созданная в начале 1996 года. В системе используется только один низкоорбитальный спутник - Garuda 1, запущенный в 2000 году с зоной покрытия - Юго-восточная Азия и Индия. Спутник способен обслуживать более 1 миллиона абонентов при 11 000 одновременных телефонных соединений. Стоит отметить, что срок эксплуатации спутника Garuda 1 около 14 лет.

Orbcom – низкоорбитальная система спутниковой связи, предназначенная для передачи коротких сообщений. Первый спутник системы Orbcom был запущен в 1991 году, сейчас спутников – 36 (по данным на 2000 год). Спутники системы Orbcom обеспечивают покрытие всей поверхности Земли. Кроме орбитальной системы спутников в состав Orbcom входят: узловые наземные станции, связанные с региональными центрами управления, и терминалы пользователей. Передача данных осуществляется следующем образом. С терминала пользователя на ближайший спутник передается сообщения. Если в зоне досягаемости спутника находится узловая станция, то спутник ретранслирует данные на нее, откуда они будут переданы в региональной центр, где будет составлен маршрут доставки сообщения абоненту, в том числе с использованием сотовых сетей, ну и собственно будет организована передача данного сообщения. Если в зоне спутника нет узловой станции, то сообщение будет сохранено и передано когда в зону действия попадет узловая станция, что может произойти и через несколько часов после передачи сообщения.

Гонец-Д1М – спутниковая система связи и передачи данных, состоящая из трех низкоорбитальных (1400 км) спутников: двух спутников первого поколения «Гонец-Д1» и модернизированного спутника «Гонец-М», с периодом обращения 114 минут. Так же в состав системы входит наземная инфраструктура, состоящая из Центра управления системой, Центра управления связным комплексом, Центральных и Региональных станций, Центра управления полетом и Баллистического центра. Наземных региональных станций 4 штуки и располагаются они в г. Москве, г. Железногорске (Красноярский край), г. Южно-Сахалинске и на полуострове Тикси. На данный момент спутниковая система связи обеспечивает покрытием всю территорию России и мощности системы, при условии выполнения программы и доведения орбитальной группировки спутников до 14 шт, будет достаточно для обеспечения связью в труднодоступных районах России до 200 000 абонентов. В 2012 году должны были запустить еще 5 спутников «Гонец-М», однако о результатах мне не известно. До 2015 года планируется расширить состав спутников связи до 14 штук.

Полярная звезда – спутниковая система связи, разрабатываемая ОАО «Газпром космические системы». Система «Полярная звезда» предназначена для обеспечения широкополосной мобильной связи на территории России и приполярных областях. Правда использоваться она будет в основном для обеспечения связи и доступа в интернет подвижных и удаленных объектов ОАО «Газпром». На данный момент (2012 год) орбитальная группировка спутников насчитывает четыре космических аппарата, располагающихся на высокоэллиптической орбите.

Глонасс – российская спутниковая навигационная система, состоящая из 31 спутника располагающихся на орбитах на высоте 19100 км, из которых 24 спутника используются по назначению, остальные спутники в резерве или на этапе технического обслуживания, а одни спутник на этапе испытания (по данным на конец 2012 года). Спутниковая система Глонасс обеспечивает определение координат с точностью 3-6 метров при использовании 7-8 спутников. Навигационные устройства абонентов могут одновременно со спутниками навигационной системы Глонасс использовать данные спутников навигационной системы GPS в общем количестве 14-19 спутников, при этом точность определения координат составит 2-3 метра.
Спутники, входящие в систему Глонасс, синхронно выдают сигнал. Устройства абонентов, принимая сигналы от спутников, засекают время получения сигнала от каждого спутника. Зная положения спутников (спутники двигаются по известным орбитам с известной скоростью) и задержки между приемами сигнала от них (чем дальше спутник, тем позже синхронный сигнал будет получен) составляется система уравнений (минимум нужно получить сигнал от четырех спутников) из которой рассчитывается положение устройства абонента. Чем больше спутников участвует в расчете, тем более точно будут определены координаты абонента.

GPS – спутниковая навигационная система, созданная министерством обороны США. GPS состоит из 30 спутников обращающихся вокруг земли по круговым орбитам на высоте порядка 20200 км. На самом деле количество спутников больше, но часть из них находится на техническом обслуживании, но в работе (на конец 2012 года) используется только 30 спутников. Система GPS обеспечивает точность определения координат 2-4 метра при использовании 6-11 спутников. Принцип работы системы GPS и Глонасс схожи, но создание спутниковой системы GPS было начато раньше. Так первый спутник системы GPS был запущен 14 июля 1974 г, а первый спутник системы Глонасс был выведен на орбиту только в 12 октября 1982 года. Так же в систему GPS входит больше спутников и GPS позволяет получить точность определения координат большую, чем система Глонасс.


На этом обзор существующих технологий, стандартов и систем беспроводной связи я закончу. Естественно, это далеко не полный перечень, но в нем приведены примеры наиболее популярных и часто используемых видов беспроводной связи. Надеюсь, обзор поможет вам проще ориентироваться в столь обширном и многообразном сегменте науки и техники, в мире беспроводных технологий, который быстро и уверенно и идет на смену устаревающим, неудобным и непрезентабельным технологиям проводной связи.


Беспроводная передача данных, при которой сигналы передаются через воздух или космос без каких-либо физических ограничений, становится популярной альтернативой физическим каналам передачи, таким как витая пара, коаксиаль­ный или оптоволоконный кабель. В настоящее время общие технологии для беспро­водной передачи данных объединяют микроволновую передачу, коммуникацион­ные спутники, пейджеры, сотовые телефоны, персональные коммуникационные службы (PCS), интеллектуальные телефоны, персональные карманные компью­теры (PDA) и сети мобильных данных.

Средством беспроводной передачи служит спектр электромагнитных волн, показанный на рис. 8.3. Некоторые типы беспроводной передачи, такие как мик­роволны или инфракрасные волны, занимают специфические спектральные диа­пазоны частот, измеряемые в мегагерцах (МГц). Другие типы беспроводной пере­дачи получили широкое распространение в настоящее время (например, сотовые телефоны или пейджинговые устройства), поэтому в этом случае выделяется специ­фический диапазон частот, предоставляемый национальными регулирующими агентствами, который регулируется международными соглашениями. Каждый диапазон частот имеет присущие ему преимущества и недостатки, облегчающие выбор области его применения.

Микроволновые системы, как наземные, так и воздушные, передают высоко­частотные радиосигналы через атмосферу и широко используются для передачи больших объемов данных на огромные расстояния, из одного пункта в другой. Микроволновые сигналы передаются по прямой линии и не способны огибать кривизну Земли; поэтому наземные системы передачи на дальние расстояния требуют, чтобы станции передачи были расположены на расстоянии от 25 до 30 миль друг от друга, что приводит к их удорожанию.

Эта проблема может быть решена путем отражения микроволновых сигналов от спутников, которые служат ретрансляционными станциями для микроволно­вых сигналов, передаваемых от наземных станций. Коммуникационные спутни­ки эффективны (обеспечивают минимальные издержки) при передаче огромного количества информации на сверхбольшие расстояния. Спутники обычно исполь­зуются для осуществления коммуникаций в среде больших, географически раз­бросанных организациях, когда затруднена связь с помощью кабельных систем или наземных микроволновых станций. Например, компания Amoco использует спутники для передачи данных, содержащих результаты разведки нефтяных за­лежей на океанском шельфе, в режиме реального времени. Исследовательские корабли передают собранные данные, используя геосинхронные (геостационар­ные) спутники, в центральные компьютерные центры в США в целях их даль-



нейшего использования исследователями в Хьюстоне, Тулзе и пригородах Чика­го. На рис. 8.4 иллюстрируются принципы работы этой системы.

Обычные коммуникационные спутники вращаются по стационарным орбитам на расстоянии примерно 22 тыс. миль от поверхности Земли. В последнее время запускаются новейшие спутниковые системы, так называемые низкоорбиталь­ные спутники. Эти спутники находятся значительно ближе к Земле и способны улавливать сигналы от маломощных передатчиков. Эти спутники также потреб­ляют меньше энергии, а их запуск обходится дешевле, чем в случае с геостацио­нарными спутниками. С такими беспроводными сетями деловые люди смогут путешествовать всюду по миру и иметь доступ к богатым коммуникационным возможностям, включая видеоконференции и доступ к Интернету.

Другие беспроводные передающие технологии используются в ситуациях, требующих удаленного доступа к корпоративным системам и мобильным вычис­лительным мощностям. Пейджинговые системы применяются несколько десяти­летий, первоначально только подавая звуковой сигнал, когда пользователь, полу­чая сообщение, должен был перезвонить в офис, чтобы узнать о содержании самого

Microwave (микроволны/радиоволны)

Передача больших объемов информации, на дальние расстояния из пункта в пункт передачей через атмосферу радиосигналов высокой частоты от одной наземной станции к другой.

Satellite (спутниковый канал)

Передача данных с использованием орбитальных спутников, которые служат в качестве ретрансляционных станций для передачи микроволновых сигна­лов на очень большие расстояния.

Paging system (пейджинговая система)

Беспроводная передающая технология, предусматривающая прием пейдже­рами радиосигналов, сопровождаемый соответствующим звуком в момент получения сообщения; используется для передачи коротких алфавитно-чис-ловых сообщений.

сообщения. В настоящее время пейджинговые устройства могут посылать и по­лучать короткие алфавитно-числовые сообщения, которые пользователь читает на экране пейджера. Пейджинг полезен для сообщения с подвижными рабочими, такими как ремонтные бригады; односторонний пейджинг также может обеспе­чить недорогой способ сообщения с работниками в офисах. Например, Computer Associates распространяет двусторонние пейджеры, снабженные управляющими программами СА Unicenter, которые позволяют операторам компьютерных сетей контролировать ситуацию, а также оперативно реагировать на возникающие про­блемы.

Сотовые телефоны функционируют путем передачи/приема радиоволн для сообщения с базовыми станциями, расположенными внутри смежных географи­ческих территорий, называющихся сотами. Телефонный сигнал передается ло­кальной соте, затем он передается от станции к станции (от соты к соте), пока не достигнет целевой соты, после чего передается получающему телефону. По мере того как сотовый сигнал перемещается от одной соты к другой, компьютер, кото-

Cellular telephone (сотовый телефон)

Personal communication services (PCS) (персональные коммуникацион­ные услуги)

Цифровая сотовая технология, которая использует радиоволны более низкой мощности, более высокой частоты, чем аналоговая сотовая технология.

Smart phone (интеллектуальный телефон)

Беспроводной телефон, предлагающий возможности голосовой и текстовой связи, а также подключение к Интернету.

рый контролирует сигналы от сот, выделяет радиоканал, назначенный следу­ющей соте. Размер шестиугольных сот обычно достигает восьми миль, хотя он может уменьшаться в густонаселенных местностях.

Более старые сотовые системы являются аналоговыми, а более новые сотовые системы - цифровые. Персональные коммуникационные службы (PCS) являют­ся популярным типом цифровой сотовой услуги. Служба PCS носит полностью цифровой характер. С ее помощью обеспечивается передача речи и данных, а так­же используется более высокочастотный диапазон, чем в случае с аналоговыми сотовыми телефонами. Соты PCS значительно меньше по размеру и более близко расположены, чем аналоговые соты, и могут передавать больший объем трафика. В дополнение к речевым коммуникациям более новые модели цифровых со­товых телефонов могут обрабатывать голосовую почту, электронную почту и фак­сы; сохранять адреса; обеспечивать доступ к частным корпоративным сетям, а так­же к Интернету. Эти интеллектуальные телефоны оснащены web-браузерами, благодаря чему обеспечивается доступ к web-страницам, содержащим текст или другую информацию (без графики), что удобно в случае устройств, снабженных небольшими по размеру экранами. Некоторые модели интеллектуальных теле­фонов снабжены большими экранами, а также дополнительными клавиатурами, что облегчает доступ к Интернету. В гл. 9 подробно рассматривается применение этих устройств для обеспечения беспроводного доступа к Интернету.

Карманные компьютеры (PDA) являются маленькими, снабженными сенсор­ными экранами, портативными компьютерами, обеспечивающими возможность полностью цифровой передачи данных. Устройства PDA имеют встроенные бес­проводные телекоммуникационные возможности, а также программное обеспече­ние органайзера. Хорошо известным примером является подключаемый органайзер Palm VII. Это устройство позволяет выполнять обмен сообщениями электронной почты, а также обеспечивает доступ к Интернету. Поддерживаются также такие приложения, как электронный планировщик, адресная книга и финансовый орга­низатор. Устройство может принимать данные, введенные с помощью пера, водимо­го по сенсорному экрану. В «Организационном окне» описана деятельность организации Safeway U. К., использующей PDA в приложении электронной ком­мерции для совершения покупок в гастрономе.

Personal digital assistants (PDA) (карманные компьютеры)

Маленькие, снабженные сенсорными экранами, портативные компьютеры, обладающие встроенными цифровыми телекоммуникационными возможно­стями.

Mobile data networks (сети мобильных данных)

Беспроводные сети, которые осуществляют двустороннюю передачу файлов данных дешево и эффективно.

Беспроводные сети, специально спроектированные для двусторонней пере­дачи файлов данных, называются мобильными сетями данных. Эти основанные на радиоволнах сети передают данные, генерируемые портативными компьюте­рами. Другой тип сети мобильных данных основан на сериях передатчиков, пост­роенных специально для передачи текста и данных. Сеть Ardis (которой владеет American Mobile Satellite Corp.) является общедоступной сетью, которая исполь­зует описанные возможности для организации двусторонней передачи данных в национальном масштабе. Компания Otis Elevators использует сеть Ardis для управ­ления перемещениями специалистов по техническому обслуживанию в пределах всей страны, находясь в офисе, расположенном в штате Коннектикут. Специали­сты применяют эту сеть для отсылки составленных отчетов.

Беспроводные сети и передающие устройства более дорогие, медленные и склон­ные к ошибкам, чем обычные локальные сети (Varshney and Vetter, 2000). Однако основные цифровые сотовые сети постоянно повышают скорость передачи дан­ных (гл. 9). (Владельцы спутниковых систем, таких как Teledesic, тратят мил­лиарды на обеспечение огромных скоростей передачи больших объемов данных по беспроводным сетям, связанным с мультимедийными приложениями.) Обес­печение оптимальной пропускной способности и энергопотребления в беспро­водных устройствах требует внимательного управления с точки зрения как тех­нического, так и программного обеспечения (Imielinski and Badrinath, 1994). Вследствие того что радиосигнал может быть легко перехвачен, затрудняется обеспечение безопасности и секретности (гл. 14),

Данные не могут быть переданы в целостном виде между разными беспровод­ными сетями, если они используют несовместимые стандарты. Например, циф­ровая сотовая служба в Соединенных Штатах поддерживается разными операто­рами, использующими одну из нескольких конкурирующих цифровых сотовых технологий (CDMA, GSM 1900 и TDMA IS-136), которые несовместимы одна с другой. Многие цифровые сотовые портативные приемники, которые исполь­зуют одну из этих технологий, не могут действовать в странах за пределами Се­верной Америки, они функционируют на различных частотах с разными набора­ми стандартов. Детальное рассмотрение этих стандартов, а также других сетевых стандартов производится в гл. 9.

Популярные статьи

© 2024 sistemalaki.ru
Бизнес-идеи. Бизнес-планы. Франшизы. База знаний. Документы