Выбираем цифровой фотоаппарат. Тема урока: «Цифровые устройства обработки информации: цифровая видеокамера. Формирование цветного изображения

Современные фотоаппараты все делают сами, чтобы получить снимок, пользователю достаточно лишь нажать на одну кнопку. Но ведь все равно интересно: по какому же волшебству картинка попадает в камеру? Мы постараемся объяснить основные принципы работы цифровых камер.

Основные части

В основном устройство цифровой камеры повторяет конструкцию аналоговой. Главное их различие в светочувствительном элементе, на котором формируется изображение: в аналоговых фотоаппаратах это пленка, в цифровых – матрица. Свет через объектив попадает на матрицу, где формируется картинка, которая затем записывается в память. Теперь разберем эти процессы подробнее.

Состоит камера из двух основных частей – корпуса и объектива. В корпусе находятся матрица, затвор (механический или электронный, а иногда и тот и другой сразу), процессор и органы управления. Объектив, съемный или жестковстроенный, состоит из группы линз, размещенных в пластиковом или металлическом корпусе.

Где получается картинка

Матрица состоит из множества светочувствительных ячеек – пикселов. Каждая ячейка при попадании на нее света вырабатывает электрический сигнал, пропорциональный интенсивности светового потока. Поскольку используется информация только о яркости света, картинка получается черно-белой, а чтобы она была цветной, приходится прибегать к разным хитростям. Ячейки покрывают цветными фильтрами – в большинстве матриц каждый пиксел покрыт красным, синим или зеленым фильтром (только одним!), в соответствии с известной цветовой схемой RGB (red-green-blue). Почему именно эти цвета? Потому что эти цвета – основные, а все остальные получаются путем их смешения и уменьшения или увеличения их насыщенности.

На матрице фильтры располагаются группами по четыре, так что на два зеленых приходится по одному синему и красному. Так делается потому, что человеческий глаз наиболее чувствителен именно к зеленому цвету. Световые лучи разного спектра имеют разную длину волн, поэтому фильтр пропускает в ячейку лучи только своего цвета. Полученная картинка состоит только из пикселов красного, синего и зеленого цвета – именно в таком виде записываются файлы формата RAW (сырой формат). Для записи файлов JPEG и TIFF процессор камеры анализирует цветовые значения соседних ячеек и рассчитывает цвет пикселов. Этот процесс обработки называется цветовой интерполяцией, и он исключительно важен для получения качественных фотографий.

Такое расположение фильтров на ячейках матрицы называется шаблоном Байера
Основных типов матриц два, и они различаются способом считывания информации с сенсора. В матрицах типа CCD (ПЗС) информация считывается с ячеек последовательно, поэтому время обработки файла может занять довольно много времени. Хотя такие сенсоры «задумчивы», они относительно дешевы и к тому же уровень шума на полученных с их помощью снимках меньше.

Матрица типа ПЗС

В матрицах типа CMOS (КМОП) информация считывается индивидуально с каждой ячейки. Каждый пиксел обозначен координатами, что позволяет использовать матрицу для экспозамера и автофокусировки.

КМОП-матрица

Описанные типы матриц – однослойные, но есть еще и трехслойные, где каждая ячейка воспринимает одновременно три цвета, различая разноокрашенные цветовые потоки по длине волн.

Трехслойная матрица

Выше уже был упомянут процессор камеры – он отвечает за все процессы, в результате которых получается картинка. Процессор определяет параметры экспозиции, решает, какие параметры нужно применить в данной ситуации. От процессора и программного обеспечения камеры зависят качество фотографий и скорость работы камеры.

У smart-microcam.ru принцип работы несколько иной, но не будем отходить от нашей статьи.

По щелчку затвора

Затвор отмеряет время, в течение которого свет воздействует на сенсор (выдержку). В подавляющем большинстве случаев это время измеряется долями секунды – что называется, и моргнуть не успеешь. В цифровых зеркальных камерах, как и в пленочных, затвор представляет собой две непрозрачные шторки, закрывающих сенсор. Из-за этих шторок в цифровых зеркалках невозможно визирование по дисплею – ведь матрица закрыта и не может передавать изображение на дисплей.

В компактных камерах матрица не закрыта затвором, и поэтому можно компоновать кадр по дисплею

Когда кнопка спуска нажата, шторки приводятся в движение пружинам или электромагнитами, открывается доступ свету, и на сенсоре формируется изображение – так работает механический затвор. Но в цифровых камерах бывают еще и электронные затворы – они используются в компактных фотоаппаратах. Электронный затвор, в отличие от механического, нельзя пощупать руками, он, в общем-то, виртуален. Матрица компактных камер всегда открыта (именно потому и можно компоновать кадр, глядя на дисплей, а не в видоискатель), когда же нажимается кнопка спуска, кадр экспонируется в течение указанного времени выдержки, а затем записывается в память. Благодаря тому, что у электронных затворов нет шторок, выдержки у них могут быть ультракороткими.

Наведем фокус

Как уже говорилось выше, часто для автофокусировки используется сама матрица. Вообще же, автофокусировка бывает дву типов – активная и пассивная.

Для активной автофокусировки камере нужны передатчик и приемник, работающие в инфракрасной области или с ультразвуком. Ультразвуковая система измеряет расстояние до объекта по методу эхолокации отраженного сигнала. Пассивная фокусировка осуществляется по методу оценки контраста. В некоторых профессиональных камерах сочетаются оба типа фокусировки.

В принципе, для фокусировки может использоваться вся площадь матрицы, и это позволяет производителям размещать на ней десятки фокусировочных зон, а также использовать «плавающую» точку фокуса, которую пользователь сам может разместить где ему угодно.

Борьба с искажениями

Именно объектив формирует на матрице изображение. Объектив состоит из нескольких линз – из трех и более. Одна линза не может создать совершенное изображение – по краям оно будет искажаться (это называется аберрациями). Грубо говоря, пучок света должен идти прямо на сенсор, не рассеиваясь по пути. В какой-то мере этому способствует диафрагма – круглая пластинка с дыркой посередине, состоящая из нескольких лепестков. Но сильно закрывать диафрагму нельзя – из-за этого уменьшается количество света, попадающее на сенсор (что и используется при определении нужной экспозиции). Если же собрать последовательно несколько линз с различными характеристиками, искажения, даваемые ими вместе, будут гораздо меньше, чем аберрации каждой из них по отдельности. Чем больше линз – тем меньше аберрации, и тем меньше света попадает на сенсор. Ведь стекло, каким бы прозрачным оно нам ни казалось, не пропускает весь свет – какая-то часть рассеивается, что-то отражается. Чтобы линзы пропускали как можно больше света, на них наносят специальное просветляющее напыление. Если посмотреть на объектив камеры, будет видно, что поверхность линзы переливается радугой – это и есть просветляющее напыление.

Линзы располагаются внутри объектива примерно таким образом

Одна из характеристик объектива – светосила, значение максимально открытой диафрагмы. Она указывается на объективе, например, так: 28/2, где 28 – фокусное расстояние, а 2 – светосила. Для зум-объектива маркировка выглядит так: 14-45/3,5-5,8. Два значения светосилы указываются для зумов, поскольку в широкоугольном и в телеположении у него разные минимальные значения диафрагмы. То есть, на разных фокусных расстояниях светосила будет разной.

Фокусное расстояние, которое указывают на всех объективах – это расстояние от передней линзы до светоприемника – в данном случае матрицы. От фокусного расстояния зависит угол обзора объектива и его, так сказать, дальнобойность, то есть как далеко он «видит». Широкоугольные объективы отдаляют изображение относительно нашего обычного видения, а телеобъективы – приближают, и у них маленький угол обзора.

Угол обзора объектива зависит не только от его фокусного расстояния, но и от диагонали светоприемника. Для 35 мм пленочных камер нормальным (то есть примерно соответствующим углу обзора человеческого глаза) считается объектив с фокусным расстоянием 50 мм. Объективы с меньшим фокусным расстоянием – широкоугольники, с большим – телевики.

Левая часть нижней надписи на объективе – фокусное расстояние зума, правая часть – светосила

Здесь и кроется проблема, из-за которой рядом с фокусным расстоянием объектива цифровика часто указывают его эквивалент для 35 мм. Диагональ матрицы меньше диагонали 35 мм кадра, и поэтому приходится «переводить» цифры в более привычный эквивалент. Из-за этого же увеличения фокусного расстояния в зеркальных камерах с «пленочными» объективами становится почти невозможна широкоугольная съемка. Объектив с фокусным расстоянием 18 мм для пленочной камеры – суперширокоугольный, но для цифрового фотоаппарата его эквивалентное фокусное расстояние будет около 30 мм, а то и больше. Что касается телеобъективов, то увеличение их «дальнобойности» только на руку фотографам, ведь обычный объектив в фокусным расстоянием, скажем, 400 мм, стоит довольно дорого.

Видоискатель

В пленочных камерах компоновать кадр можно только пользуясь видоискателем. Цифровые же позволяют вовсе забыть о нем, поскольку в большинстве моделей для этого удобнее использовать дисплей. В некоторых очень компактных камерах видоискателя вовсе нет – просто из-за того, что нет для него места.

Самое важное в видоискателе – что через него можно увидеть. Например, зеркальные камеры так называются как раз из-за особенностей конструкции видоискателя. Изображение через объектив посредством системы зеркал передается в видоискатель, и таким образом фотограф видит реальную площадь кадра. Во время съемки, когда открывается затвор, загораживающее его зеркало поднимается и пропускает свет на чувствительный сенсор. Такие конструкции, конечно, отлично справляются со своими задачами, но занимают довольно много места и потому совершенно неприменимы в компактных камерах.

Вот так изображение через систему зеркал попадает в видоискатель зеркальной камеры

В компактных камерах применяют оптические видоискатели реального видения. Это, грубо говоря, сквозное отверстие в корпусе камеры. Такой видоискатель не занимает много места, но обзор его не соответствует тому, что «видит» объектив.

Еще есть псевдозеркальные камеры с электронными видоискателями. В таких видоискателях установлен маленьких дисплей, изображение на который передается непосредственно с матрицы – точно так же, как и на внешний дисплей.

Вспышка

Вспышка, импульсный источник света, используется, как известно, для подсветки там, где основного освещения недостаточно. Встроенные вспышки обычно не очень мощные, но их импульса достаточно, чтобы осветить передний план. На полупрофессиональных и профессиональных камерах есть еще контакт для подключения гораздо более мощной внешней вспышки. Контакт этот называется «горячий башмак».

Для хранения снимков в камере не обойтись без запоминающих устройств. И что бы ни говорили о том, что за последние годы память подешевела в несколько раз, она все еще стоит достаточно дорого. На «лишнюю» память не жалуется никто, все говорят лишь о ее недостатке. Объемом встроенной в камеру памяти производители обычно нас не балуют, и память приходится докупать в девяноста девяти случаях из ста. Ведь на стандартную восьмимегабайтную карту умещается всего от восьми до двенадцати снимков в формате JPEG, а в практически несжимаемом формате TIFF - и того меньше. Согласитесь, что крайне неудобно перекачивать на компьютер или брелок с флэшпамятью каждые шесть или десять снимков.

Сейчас большинство камер имеет сменную флэш-память, которая хранит информацию без потребления энергии и, кроме того, позволяет подсоединить портативный накопитель большой емкости. Если карта сменной памяти целиком заполнена изображениями, то ее можно просто вынуть из фотоаппарата и вставить на ее место другой модуль или продолжать снимать на встроенную память. Съемная карта памяти помещается в специальном отсеке цифровой камеры, или, правильней сказать, в слоте. Каждый тип носителя предусматривает собственный дизайн слота - вы не сможете вставить в него карту памяти, которую камера не поддерживает.

Большинство слотов спроектировано таким образом, чтобы предотвратить неправильную установку карты (например, «вверх ногами»). Камеры большинства моделей обычно «видят» одновременно лишь одну из двух имеющихся карт памяти. Если сменная карта вставлена в слот, то камера «забывает» о существовании встроенной памяти. Если на съемной карте не осталось свободного места, а хочется снимать еще и еще, следует вынуть карту из слота - тогда камера увидит свободную встроенную память. Сравнивая достоинства цифровых камер, эксперты обращают внимание на тип используемой памяти. Всегда полезно знать, насколько память камеры совместима с другими устройствами и не обернется ли дешевизна «мозгов» дороговизной или даже помехой в эксплуатации. Перечислим известные сегодня устройства хранения информации, используемые в цифровых фотоаппаратах.

Для владельцев ноутбуков лучше всего подойдет PC Card ATA, или, как ее еще именуют по названию слота, PCMCIA. Такой разъем в ноутбуках, как правило, имеется. Такая карта используется для хранения больших объемов данных (до 1 Гбайт) и применяется как внешний носитель, в зависимости от типа, в фото- и видеокамерах и в ноутбуках. Размером и формой эти карты напоминают толстую визитку. Карты PCMCIA обычно используются в больших камерах, по характеристикам приближающихся к профессиональным.
Изредка в цифровых камерах применяются устройства Mini Card. Они не слишком надежны. Кроме того, скорость считывания данных у них довольно низка. Зато они потребляют мало энергии и имеют малые габариты: 38x33x3,5 мм. Устройства Mini Card вмещают 64 Мбайт данных.

Самый распространенный в наши дни формат памяти Compact Flash во многом аналогичен картам PC Card, но его физические размеры значительно меньше. Совсем недавно развитие технологии позволило увеличить его максимальный объем до 1 Гбайт. В носителях Compact Flash нет движущихся частей, и потребляют они сравнительно мало энергии - от 3,3 до 5 В, что сделало эти карты суперпопулярными у производителей цифровой фототехники. Карты Compact Flash прочны и долговечны. Производители утверждают, что они могут хранить информацию хоть сто лет.

Компактные и не слишком дорогие карты Smart Media - или, как было принято называть их совсем недавно, SSFDC (английское сокращение от «твердотельный гибкий диск») - известны с 1997 года. Они менее совместимы с цифровыми устройствами, чем карты Compact Flash, и вот отчего. В картах Smart Media отсутствует контроллер, который имеется в Compact Flash и в других устройствах хранения данных. Таким образом, они как бы полагаются на контроллер, встроенный в камеру. Карты Smart Media имеют объем до 128 Мбайт и размер 45x37x0,76 мм - примерно со спичечный коробок. Помимо пониженной совместимости, у них есть и другие недостатки: недолговечность (срок жизни носителя не более пяти лет), хрупкость, незащищенность от внешних воздействий и малый объем. Последний когда-то казался достаточным, но сегодня совсем невелик по сравнению с предоставляемым другими носителями. Для передачи изображений на компьютер с карт Smart Media необходим специальный адаптер Smart Media.

Крохотные, размером в почтовую марку MultiMedia Card (до 128 Мбайт объемом) - из числа самых миниатюрных устройств хранения данных небольшой емкости. Вначале они были задуманы для портативных телефонных аппаратов, но малые размер и вес, а также простой интерфейс и пониженное потребление энергии привлекли внимание производителей различных цифровых устройств. MultiMedia Card все чаще используются в «гибридных» устройствах вроде цифровой фотокамеры со встроенным МРЗ-плейером, а также (иногда) в мобильных телефонах с поддержкой мультимедийных сообщений. Надо сказать, что гонка производителей оперативной памяти за миниатюризацию привела к появлению варианта MultiMedia Card под названием RS-MMC (Reduced Size MultiMedia Card, мультимедийная карта уменьшенного размера). Габариты RS-MMC сократились до 32x24x1,4 мм, и теперь они широко используются в смартфонах и мобильных телефонах новых поколений.

Память Memory Stick от фирмы Sony с максимальной емкостью 128 Мбайт с виду похожа на пластинку жевательной резинки и весит всего 4 г, но широкого применения пока не нашла - хотя устройства для ее подключения могут быть весьма экзотическими. Еще бы: закрытый стандарт, высокая цена и небольшой объем. Камеры, где предусматривается использование этого вида памяти, выпускает только корпорация Sony (с другими типами памяти они не совмещаются).

А вот карты безопасного хранения SD Card (Secure Digital Card), производство которых началось совсем недавно, похоже, обещают стать весьма популярными носителями. Сегодня они вмещают всего 256 Мбайт данных, что совсем немного, но интерес к таким картам вовсе не случаен. Дело в том, что карты SD снабжены криптозащитой от несанкционированного копирования и защитой от случайного стирания и разрушения. Такие свойства вызвали пристальный интерес как у медиакорпораций, так и у потребителей, порой желающих, чтобы картинки из личной жизни не могли быть скопированы без их ведома. Карты SD весьма малы - при габаритах 24x32x2,1 мм они весят всего 2 г. Слот для SD Card принимает и MultiMedia Card, что делает «безопасный» формат еще более перспективным. Немаловажно и то, что SD Card потребляют совсем немного энергии и довольно прочны.

Появились даже одноразовые (нестираемые) флэш-карты серии Shoot&Store от компании SanDisk. Их производитель считает, что появление таких носителей будет способствовать поистине массовому переходу от пленки к цифре. Ведь с появлением одноразовой памяти будет решена проблема хранения снимков и необходимость в компьютере отпадет сама собой. По стоимости одноразовые флэш-карты будут сопоставимы с обычной фотопленкой, а разница в цене компенсируется их надежностью и удобством выбора кадров для печати.

Представленные совсем недавно миниатюрные диски для разгрузки данных DataPlay быстро завоевывают популярность из-за своей дешевизны: 500 Мбайт такой памяти обходятся всего в 10 долларов. В DataPlay используется уменьшенная в размере DVD-оптика, а привод похож на привод винчестера. Практически DataPlay можно назвать миниатюрным DVD (размерами 33,53x39,5 мм). Компания DataPlay объявила о планах выпустить устройства емкостью в 4 Гбайт. Вот только одно нехорошо: диск DataPlay одноразовый и возможности повторной записи не предусматривает. Зато до чего дешево!

В цифровых фотокамерах нашли применение даже такие носители, как диски CD-R и CD-RW. Да-да, не удивляйтесь! Компакт-диск вставляется в камеру и несет на себе до 156 Мбайт записанных данных! Правда, компания Sony, выпускающая такую вот экзотику с прямой записью изображения на CD, пока остается на рынке в одиночестве: никто другой не пытается ей подражать.

Теперь, зная достоинства и недостатки различных видов памяти, попробуйте оценить память вашей камеры (или той, которую вы собрались купить) на фоне всего этого многообразия внешних носителей данных.

Выводы
Вынимая карту из камеры в первый раз, обратите внимание на то, как она вставляется. Перепутав направление контактов, можно повредить и карту, и камеру.
Предохраняйте карту от накопления статических зарядов. Если пришлось извлечь ее из камеры, то время от времени кладите ее на металлическую поверхность или фольгу. Не допускайте трения карты о ткань.
Особенно бережно отнеситесь к контактам карты. Не допускайте их царапанья и иных повреждений.
Имейте в виду, что многие карты довольно хрупки. Уронив карту, можно лишиться и хранящихся на ней данных, и денег, которые вы на нее потратили.

Перед знакомством с основами фотосъемки нужно изучить, чтобы узнать, как основные понятия фотографии реализуются на практике.

В первую очередь, в входит корпус фотоаппарата, также именуемый «тушкой» или «боди» от английского слова “body”.

В этой части фотоаппарата находится , которая регистрирует фотографии, а также элементы управления камерой, с помощью которых фотограф указывает, когда и как фотографировать. В состав корпуса также входят аккумулятор, встроенная , электронный дисплей для просмотра фотографий и другие элементы.

В тыльной части камеры находится видоискатель, в который фотограф видит кадр во время фотосъемки.

В основе работы некоторых видоискателей лежит зеркало, с помощью которого можно видеть сцену через объектив (такие видоискатели называются TTL). Другие видоискатели представляют собой просто отверстие в корпусе камеры (распространены в мыльницах). Благодаря TTL-видоискателю полученное изображение имеет именно те границы, которые фотограф определил при съемке, поэтому его включают в для профессиональных фотографов и серьезных любителей, чтобы обеспечить максимальную точность передачи изображения.

Спуск затвора

Спуск затвора – это специальная кнопка, с помощью которой затвор внутри камеры поднимается, чтобы зарегистрировать кадр. Устройство фотокамеры профессиональной (зеркальной) также предполагает, что этой кнопкой также поднимается зеркало, благодаря которому фотограф видит происходящее через объектив. В большинстве таких камер спуском затвора можно также управлять дистанционно, с помощью специального кабеля или инфракрасного порта.

Затвор

Непрозрачная деталь из металла или пластика внутри камеры, которая защищает матрицу или пленку от попадания на нее света. Затвор поднимается с помощью кнопки спуска, которая также входит в . На нее нажимает фотограф, чтобы запечатлеть кадр. Время, в течение которого затвор остается открытым, регулируется выдержкой.

Управление выдержкой

Выдержка – это элемент управления, с помощью которого фотограф указывает камере, на какое время открыть затвор. В автоматических камерах (мыльницах) выдержка настраивается через специальное меню, и ее значение отображается на дисплее. В профессиональных и полупрофессиональных камерах выдержка регулируется при помощи специального колесика на корпусе камеры. Выдержка измеряется в долях секунды, например, 1/60. На дисплей камеры обычно выводится только знаменатель, например, 60.

Управление светочувствительностью

С помощью светочувствительности фотограф настраивает камеру для работы в различных условиях освещения. Управление светочувствительностью входит в как элемент меню. В профессиональных камерах ею можно управлять с помощью отдельной кнопки.

Управление диафрагмой

В автоматических фотоаппаратах-мыльницах диафрагма настраивается через меню. В зеркальных фотокамерах управлять этим параметром можно с помощью отдельного колесика или кнопки. Этот параметр регулирует отверстие диафрагмы, которая находится внутри объектива.

Матрица

Матрица – ключевой элемент, входящий в . С ее помощью фотоаппарат регистрирует фотографии. Матрица – это светочувствительный материал, на который проецируется изображение. От физического размера этого элемента зависит качество фотографий. Чем больше матрица, тем лучше качество получаемых изображений.

Вспышка

Чаще всего в также входит встроенная вспышка. В мыльницах вспышка встроена в корпус фотоаппарата. В зеркальных фотокамерах и некоторых компактах она выносится над камерой на специальном держателе.

«Горячий башмак»

– обязательный элемент, который входит в , используемой для профессиональных целей. Это металлическое крепление, в которое вставляется внешняя вспышка. Крепление называется горячим башмаком, поскольку в нем размещены электрические контакты, и вспышка заходит в них, как нога в обувь.

Кольцо объектива (байонет)

Кольцо объектива включено в , которая позволяет менять объективы. Это металлическое кольцо в лицевой части камеры, на которое крепится объектив. В кольце находятся электронные контакты, посредством которых на объектив передаются параметры съемки. Сбоку от кольца находится специальная кнопка, нажав на которую, фотограф может отсоединить объектив от корпуса камеры.

Объектив

К корпусу камеры через байонет крепится объектив — элемент, с помощью которого изображение проецируется на матрицу. В следующей статье подробно описано устройство объектива фотоаппарата.

Вопрос длительного хранения цифровых фотографий несколько глубже, чем может показаться на первый взгляд. В отличие от «оперативных» файлов, цифровой фотоархив должен гарантированно сохраниться невредимым за годы и десятилетия. Казалось бы, чего проще? Доступно множество различных носителей: оптические CD, DVD и BlueRay (BR) диски, всевозможные флэшки и карты памяти, обычные жесткие диски и даже удаленные файловые хранилища, так называемые файлообменники. Основная проблема длительного хранения цифровых снимков именно в надежности носителей, а емкость, скорость или удобство использования отходят на второй план. Еще не лишним будет помнить, что при выборе носителя информации следует учитывать частоту обращений к файлам. Одно дело — запертый в сейфе «на века» оптический диск, и совершенно другое — постоянно пополняемый семейный альбом. Как водится, выигрывая в одном — проигрываем в другом, закон в полной мере относится и к носителям информации. Идеального хранилища пока, увы, не изобрели. Постараемся разобраться в сегодняшнем изобилии и помочь сделать осознанный выбор, не полагаясь на рекламу.

Объем. Вообще-то, чем больше — тем лучше, запас не повредит. Но если ограничен бюджет, необходимую емкость носителя можно прикинуть, исходя из общего числа и объема фотографий. Автор признает только архивы в форматах без сжатия, например TIFF. В распространенном JPEG объем фотографии меньше примерно в 5 раз. Считать очень просто, делим емкость носителя на объем фото. Первая написана на самом устройстве, а примерный объем сканированной фотографии можно оценить по табличке (размеры указаны максимальные для глубины цвета при сканировании 24 бита):

Разрешение, DPI Размер, см Примерный объем, Мб
300 9х12 5
300 10х15 8
300 12х18 11
300 20х25 25
600 9х12 19
600 10х15 30
600 12х18 42
600 20х25 110
1200 9х12 72
1200 10х15 115
1200 12х18 170
1200 20х25 430

Носители. Самым компактным и, наверное, уже самым распространенным носителем информации является так называемая флэш (flash) память. Крошечные микросхемы стоят в картах памяти, «флешках» и монтируются в различную аппаратуру. Этот тип памяти хорош энергонезависимостью, относительной дешевизной и емкостью — сегодня никого не удивишь USB-флэшкой на 256 Гигабайт. К минусам относится низкая скорость обмена и самое главное — не слишком высокая надежность. Производители микросхем памяти заявляют гарантированный срок хранения данных до 10 лет, но с маленькой оговоркой — в нормальных условиях. В данном контексте «нормальные» значит «идеальные», которых наверняка не сможет обеспечить ни один обычный человек. Стабильная температура, влажность и даже атмосферное давление. Отсутствие излучений как радиочастотных, так и радиоактивных. Отсутствие обращений к памяти в течение срока хранения. Вот такие «нормальные» с точки зрения производителей условия… При обычном же использовании отдельные биты информации могут потеряться уже в первые месяцы, через пару-тройку лет процентов 20 (в среднем) записанных данных будут искажены или недоступны. Вывод: флэш-память отлично подходит для оперативного хранения данных и с оговорками — для длительного. Оговорка одна, но существенная: требуется хотя бы раз в год перезаписывать все данные на новый носитель. Зато дешево и компактно, подходит для постоянно пополняемого архива, не рассчитанного на долгие годы. Покупать лучше память от именитых брэндов, таких как Kingston, Transcend, Sandisk и прочих, дающих гарантию хотя бы года три.

Оптические диски широко используются уже не первый десяток лет и претерпели всего три ключевых стадии эволюции — CD, DVD и BlueRay технологии. На вид диски разных поколений отличить сможет разве что специалист, но по емкости они отличаются на порядки. Сравните: CD — 750 Мб, DVD — до 8 Гб, БлюРэй — до 50 Гб сегодня и до 200 Гб обещают в недалеком будущем. Для наглядности, на первый поместится приблизительно 20 больших фотографий, на второй — около 200, и соответственно на третий — в районе 1500 снимков. Надо отметить, что BlueRay носители довольно дороги сами по себе, а оборудование для записи по карману лишь весьма обеспеченным людям. CD уже отходят в прошлое, а сегодняшний лидер в этой области — DVD — доступен всем. Поэтому BR диски в качестве хранилища домашнего архива пока нельзя назвать массовыми. О надежности. Здесь планку задает сам материал — прозрачный пластиковый диск. Очевидно, что пластмасса боится повышенной температуры (деформация диска) и механических воздействий (поверхность царапается). И то и другое мешает правильно прочесть информацию. Но количество циклов считывания практически бесконечно, к тому же оптические носители равнодушны к любому типу радиации. Отсюда можно сделать вывод, что DVD, а в ближайшем будущем и BR диски хорошо подходят для длительного хранения фотоархивов, следует лишь позаботиться о надежной упаковке. То есть архив получается компактным и весьма надежным, но не удобен для пополнения и/или перезаписи — время записи одного DVD диска может доходить до часа. Наиболее надежными являются диски от Verbatim или TDK при условии, что они настоящие. Лучше всего искать носители со словами в названии «ExtraLife», «Life Plus» и подобные, говорящие о повышенной надежности хранения.

Жесткие диски — «винчестеры» — давно и прочно обосновались в нише оперативного хранения информации. Современная технология позволяет создавать носители емкостью до десятков Терабайт (!), куда можно записать любой мыслимый фотоархив. Жесткие диски обеспечивают высокую скорость обмена данными, огромное количество циклов перезаписи при невысокой цене и приемлемой надежности. Но следует помнить, что жесткий диск — сложное и точное механическое устройство, пусть даже высокотехнологичное. Поэтому надежность хранения определяется как условиями эксплуатации, так и качеством конкретного экземпляра. Поскольку используется магнитная запись, винчестеры «боятся» сильных магнитных полей и механических перегрузок, особенно во время работы. Восстановление сбойного носителя может обойтись очень дорого или вообще выходить за рамки возможностей мастера. Но в более-менее комфортных условиях жесткий диск практически идеален для хранения фотоархива, даже постоянно обновляемого. Тем более, существуют простые способы на порядок повысить надежность хранения — использование одновременно нескольких жестких дисков в так называемом RAID-массиве. Массив можно организовать на большинстве домашних компьютеров или же приобрести специализированное устройство (обычно в пределах 300$). Принцип прост: хранилище создается из нескольких одинаковых жестких дисков, специальный контроллер дублирует и контролирует целостность записанных данных, постоянно мониторит состояние каждого носителя. При выходе из строя (что случается крайне редко) одного или даже двух дисков — информация не потеряется и восстановится при подключении новых чистых винчестеров. Таким образом, надежность хранения многократно возрастает, ведь даже один жесткий диск — весьма надежен и может работать много лет не выключаясь. К минусам такого решения следует отнести громоздкость, высокую цену плюс необходимость некоторых познаний в компьютерном «железе» и настройках «софта». Эти недостатки с лихвой компенсируются скоростью и надежностью архива в средних домашних условиях. Отлично показывают себя винчестеры WesternDigital (WD), Samsung, Hitachi, желательно поискать модель для повышенных нагрузок — будет подороже, но надежней.

Удаленные хранилища данных. С развитием интернета появились многочисленные файловые хостинги — сайты, на которые можно закачать свои документы (не важно, фото ли, видео или просто файлы) в пределах отведенных квот и в любое время получить доступ к файлам через любой компьютер, подключенный к глобальной сети. Обычно бесплатно предоставляется весьма скромный объем, который можно расширить за такие же скромные деньги. Сервисы наперебой хвалятся надежностью и защищенностью данных — и многие не голословно. Крупные компании могут позволить себе самое современное и супернадежное хранилище файлов под присмотром опытных специалистов. Системные администраторы делают все, чтобы не допустить взлома персональных дисков. И тем не менее — кто поручится, что через десять лет эта компания все еще будет существовать? Кто гарантирует, что не найдется хакер, который из хулиганских побуждений выложит ваши персональные файлы на всеобщее обозрение? Да и сам доступ к сети сегодня есть — завтра нет. И все же удаленные хранилища очень удобны, особенно совместно с быстрым интернетом и отлично подходят для накопления, обновления и формирования архива, который в свою очередь будет сохранен на более подходящем носителе. Ссылок сознательно не даю, поскольку не обладаю информацией о надежности того или иного сервиса. Сам пользуюсь зарубежным «DropBox» — показалось удобно, да и сервис уже не новый.

И наконец, общее, очень важное правило , действующее независимо от типа выбранного носителя информации: ДЕЛАЙТЕ РЕЗЕРВНЫЕ КОПИИ! Именно так, прописными буквами! Пусть лень, нет времени или дорого — при первой же возможности делайте копии на разные носители. Лично у автора основной архив, который «на века» — лежит на двух десятках DVD, причем каждый диск в двух экземплярах. Оперативный архив — на RAID-массиве домашнего компьютера, а наиболее ценные файлы дублированы на удаленное хранилище в интернете. Вместо массива можно использовать пару-тройку больших флэшек или внешних жестких дисков, только обязательно делать копии на все, не лениться. Помните, что восстановить испорченный носитель информации сложно, дорого и не всегда возможно.

Тема урока: «Цифровые устройства обработки информации : цифровая видеокамера »

Цель урока:

создать условия для формирования у учащихся представления о видах и назначении цифровых устройств для обработки информации;

продолжить развивать навыки обработки информации с помощью различных устройств;

продолжить воспитывать бережное отношение к компьютерной технике , выполнение правил безопасного поведения в кабинете

ХОД УРОКА:

1. Организационный момент.

2. Повторение материала предыдущего урока:
1) о каком устройстве мы говорили на прошлом уроке?

2) Какие основные элементы фотоаппарата вы можете назвать?

3) Каковы достоинства цифровых фотокамер?

4) Где хранятся изображения в фотоаппарате?

5) Как осуществляется передача изображений с фотоаппарата?

3. Изучение нового материала.

К сегодняшнему уроку вы подготовили сообщения о цифровых видеокамерах – устройствах, которое намного расширяет возможности современных компьютеров. Знакомство с этим устройством мы проведем по тому же плану, что и знакомство с цифровым фотоаппаратом, т. е:

1 – основные элементы видеокамеры

2– достоинства цифровых видеокамер

3– устройства для записи информации в видеокамере

4 - передача информации с видеокамеры в компьютер

5– веб-камеры

Предоставим слово представителям групп.

(учащиеся делают сообщения, при необходимости сопровождают рассказ иллюстрациями)

Материал, который может быть предложен учащимся, находится в приложении 1.

4. Практикум по переносу видео в компьютер

Так же как и на прошлом уроке, можно снимать фрагменты выступлений учащихся, их деятельность на уроке . На практике показать, как перенести видео (на крайний случай с фотоаппарата). Форма работы – индивидуальная.

5. Монтаж видеофильма об изучении Цифровых устройств обработки информации

Работа с видеоредактором MoveMaker (фронтально):

MoveMaker .

2. Загрузить видео изображения – Запись видео - Импорт видео.

3. Загрузить фото – Запись видео - Импорт изображений

4. Расположить видеофрагменты и фотографии на панель раскадровки (перетаскиванием)

5. Добавить переходы: Монтаж фильма – Просмотр видеопереходов – Выбрать видеопереход – перетащить его на панель раскадровки в область между кадрами.

6. Добавит эффекты: Монтаж фильма – Просмотр эффектов – Выбрать эффект – перетащить его на панель раскадровки непосредственно на кадр. Для усиления эфеекта, его можно использовать несколько раз.

7. Добавление тиров и надписей: Монтаж фильма – Создание названий и титров – Выбрать эффект титров или надписи – ввести текст, установить форматирование – нажать кнопку «Готово».

8. Добавление музыки: Запись видео – импорт звука и музыки – перетащить фрагмент на панель раскадровки.

9. Сохранение фильма в формате WMV – Завершение создания фильма – Сохранение фильма на компьютере - Подтверждать запросы мастера сохранения фильма.

Данный алгоритм выдать учащимся как памятку. Работу выполняем все вместе, учитель показывает все тоже самое на экране.

6. Домашнее задание: На следующем уроке учащимися будет выполняться проект по созданию фильма. Для этого им предстоит продумать тематику проекта, какие фрагменты и фотографии они будут использовать. На уроке им предстоит отснять материал и смонтировать небольшой фильм. (Тематика разнообразна: Моя школа, Мой класс, Наш кабинет информатики, Наши учителя и т. д.) Работа предполагается в группах по 2-3 человека.

Приложение 1. Видеокамеры

Видеокамеры в первую очередь делятся на цифровые и аналоговые. Здесь я не буду рассматривать аналоговые камеры (VHS , S -VHS , VHS -C , Video -8, Hi -8) по вполне понятным причинам. Им место в комиссионке, или на верхней полке в кладовке (а вдруг когда-нибудь раритетом станет), но обработка аналогового видео рассмотрена будет обязательно, так как кассет, я думаю, у каждого найдется немало. Итак, современные бытовые видеокамеры различаются по виду носителя видеоинформации, по способу записи (кодировке) видеоинформации, по размеру и количеству матриц, ну и, само собой по оптике.

1.1.1. По виду носителя информации камеры делятся на:

HDV -камеры: новейший и судя по всему основной в будущем формат. Размер кадра до 1920*1080. Представьте себе, каждый кадр – это 2-х мегапиксельная фотография, и вы поймете какое качество видео. Строго говоря, HDV – это формат записи, так как есть камеры HDD , работающие по формату HDV . Но я специально поставил этот формат в этот ряд, так как большинство существующих HDV -камер пишут на кассеты. Если деньги для вас не проблема, эти камеры для вас.

DV -камеры: основной формат бытовых цифровых видеокамер. Размер кадра 720*576 (PAL ) и 720*480 (NTSC ). Качество записи во многом зависит от оптики и качества (и количества) матриц. DV -камеры делятся на собственно DV (mini -DV ) – камеры и камеры Digital -8. Какую именно покупать, зависит от вас, с одной стороны mini -DV – камеры более распространенны, с другой, если до этого у вас была камера Video -8, есть смысл обратить внимание на камеры Digital -8, так как эти камеры свободно записывают на любые кассеты формата 8 (Video -8, Hi -8, Digital -8(могут, конечно, ругаться, мол, слабовата Video -8 для меня, но пишут на них запросто)), кроме того, записывая на кассеты лучшего качества (Hi -8, Digital -8), вы получите более продолжительную запись по сравнению с mini -DV .

DVD -камеры. Я не отношусь к поклонникам данного вида камер. Качество записи у них ниже, чем у DV -камер, да и диска при наилучшем для них качестве хватает минут на 20. Но! Если вы не притязательны к качеству (тем более что на экране обыкновенного телевизора разница не так и заметна) и у вас нет желания заморачиваться с изготовлением фильма, последующей кодировкой в DVD -формат, вы вполне можете пользоваться DVD -камерой. Тем более что собрать полноценный DVD из полученных файлов на DVD 1,4 Гб (используемый в DVD -камерах), можно довольно быстро с помощью специализированных программ (например, CloneDVD и DVD -lab ).

Флэш-камеры. Запись производится на флэш-карточку в форматах MPEG 4 и MPEG 2. Продолжительность зависит от объема карточки, выбранного размера кадра и качества кодировки. MPEG 2 предпочтительней, так как качество выше, но места занимает больше. Но ни тот, ни другой формат при обработке камерой видеоинформации для записи на карточку не смогут обеспечить качество, хоть немного приближенное к DV . Поэтому порекомендовать подобные камеры можно для подарка детям или для съемок в экстремальных условиях, так как неоспоримым преимуществом этих камер является компактность и отсутствие механических частей (исключение – трансфокатор).

HDD -камеры. Запись производится на встроенный жесткий диск. Запись может производится во всех форматах от HDV до MPEG 4 (зависит от модели). Возможно, как и флэш-камеры – это будущее бытовых видеокамер, но в отличие от последних HDD -камеры уже сейчас могут обеспечить великолепное качество HDV , либо до 20-ти часов записи неплохого качества MPEG 2 на 30-ти Gb диск. Но посмотрим на это великолепие с другой стороны, запись 1 часа формата DV занимает на жестком диске 13-14 Gb , и, произведя нехитрые вычисления, скажите что проще переставить кассету или переписывать в компьютер видео через 2,3-3 часа записи (к хорошему качеству привыкаешь быстро).

HDV -камеры

Высокая цена

DV(miniDV) -камеры

Де-факто основной стандарт домашней видеозаписи

Проблема выбора, в этом стандарте мирно уживаются дешевые «мыльницы» и полупрофессиональные модели

DV(Digital-8) -камеры

Запись и воспроизведение на любые кассеты формата 8

Более продолжительная запись на 1 кассету по сравнению с miniDV

Небольшая распространенность формата

DVD -камеры

Записал, достал диск из камеры, поставил в плеер

Невысокое качество записи

Небольшое время записи на диск

Флэш-камеры

Отсутствие механических частей (за исключением трансфокатора), как следствие более высокая надежность

Невысокое качество записи

HDD -камеры

Гораздо большее время записи по сравнению с кассетными аппаратами

Высокая скорость перезаписи информации на жесткий диск компьютера

Частое «скидывание» видео в компьютер

В «полевых» условиях необходим ноутбук с достаточно большим жестким диском

Высокая цена

1.1.2. Любая цифровая видеокамера использует компрессию (сжатие) оцифрованного видео, потому что на данный момент просто не существует носителей способных выдержать некомпрессированное видео (одна минута несжатого видео PAL 720*576 без звука занимает примерно 1,5 Гб на жестком диске, нехитрые подсчеты позволяют увидеть, что на один час уже потребуется 90 Гб). И еще необходимо обработать этот огромный объем информации, даже простая перезапись 90 Гб потребует около пяти часов. Поэтому производителям видеокамер просто необходимо использовать компрессию оцифрованного видео. Современные видеокамеры используют следующие виды компрессии: DV , MPEG 2, MPEG 4 (DivX , XviD ).

DV – основной вид сжатия видео в современных цифровых видеокамерах, его используют HDV , miniDV , Digital 8 и некоторые HDD -камеры. Высокое качество данного вида компрессии, я думаю, еще долго ведущим среди других форматов.

MPEG 2 – формат, используемый для записи DVD . Хотя и имеет несколько худшее качество записи по сравнению с DV , но в зависимости от битрейта (грубо говоря, количество байтов, выделяемых на одну секунду видео) используя данный вид компрессии можно получить видео достаточно высокого качества (вспомните лицензионные DVD ).

MPEG 4 – честно говоря, производители цифровой аппаратуры (фото и видео) серьезно «подмочили» репутацию данного формата. Чтобы «выжать» из этого формата все возможное необходимо использовать достаточно мощный компьютер и потратить приличное количество времени. Поэтому и получается, что конечное видео в формате MPEG 4 на видеокамерах и фотоаппаратах невысокого разрешения и невысокого (мягко говоря) качества. Что используется DivX или XviD не так уж важно, разницу (небольшую), опять же, можно увидеть лишь при обработке видео на компьютере.

1.1.3. Немаловажное, а скорее основное, влияние на конечный результат оказывает качество матрицы, используемой для оцифровки оптического сигнала, проходящего через линзу видеокамеры. Чем она больше, тем лучше. При выборе видеокамеры не поленитесь заглянуть в спецификацию и посмотреть количество эффективно используемых пикселей («точек» на матрице). Например, в спецификации к видеокамере Sony ХХХХХХХ написано, что при размере кадра 720*576 (0,4 Мегапикселей) для видео используется 2 Мегапикселей матрицы. Естественно это самым положительным образом сказывается на конечном результате, так как при любой кодировке (компрессии) жестко действует закон: чем лучше исходный материал, тем лучше результат, а чем больше света попадет на матрицу, тем меньше будет цифровых шумов, тем в более темное время можно будет использовать видеокамеру и т. д. Все вышесказанное в тройном размере относится к трехматричным камерам, кроме всего прочего система трех матриц позволяет существенно уменьшить цветовые шумы за счет того, что разделение света на цветовые составляющие RGB (обязательное условие для получения видеосигнала) производится не электроникой, а оптической призмой, затем каждая матрица обрабатывает свой цвет.

Косвенно о размере и качестве матрицы можно судить по встроенному в видеокамеру цифровому фотоаппарату, чем больше у него разрешение, тем лучше.

1.1.4. С оптикой видеокамеры все просто: чем больше, тем лучше. Чем больше диаметр объектива, тем больше света попадет на матрицу. Чем больше оптическое увеличение объектива…Впрочем, на этом стоит остановиться поподробнее. Первое что хочется сказать: НИКОГДА не смотрите на гордые надписи на боку видеокамеры (Х120, Х200, Х400 и т. д.). Смотреть нужно только на оптическое увеличение объектива (либо на камере (optical zoom ), либо на самом объективе). Конечно, цифровое увеличение использовать можно, но не стоит забывать, что цифровое увеличение - это ограничение количества эффективно используемых пикселей матрицы (см. рисунок). А всего лишь 2-х кратное цифровое увеличение (например, при 10-ти кратном объективе, это будет 20-ти кратное общее увеличение) приведет к уменьшению эффективно используемых пикселей на матрице в 4 раза!

Ну и неплохо бы иметь оптический стабилизатор, так как в камерах с цифровым стабилизатором используется не вся площадь матрицы.

Веб-камеры

Веб-камеры – это недорогие сетевые стационарные устройства, передающие информацию, обычно видеозапись, по беспроводным или кросскоммутируемым каналам Internet и Ithernet. Основное назначение «комнатных» веб-камер заключается в использовании их для работы с видеопочтой и проведения телеконференций. Широкое применение такие камеры нашли в «беби-ситинге» - они отлично справляются с ролью видеонянь, передавая изображение предоставленного самому себе ребенка. «Уличные» антивандальные веб-камеры выполняют роль охранных видеонаблюдателей. Возможность захвата изображения в режиме видеокамеры или фотоаппарата - это дополнительные возможности веб-камер. Ожидать высокого качества от записываемых видеороликов или цифрового фото в данном случае не стоит. Потому что нет смысла оснащать веб-камеры качественной оптикой и дорогой электроникой - передача видеоданных в режиме реального времени требует невероятно высокой компрессии, неизбежно приводящей к потере качества изображения. Хотя получение шикарной картинки с помощью веб-камер принципиально невозможно, именно качество получаемого изображения является основной характеристикой, позволяющей субъективно сравнивать и выбирать камеры этого типа. Впрочем, на предпочтение также могут повлиять интересный дизайн, программная комплектация и различные опции вроде поддержки скинов и дополнительных коммуникационных интерфейсов. Все веб-камеры оснащены функцией детектора движения и аудиовходом, позволяющим передавать звуковую информацию, их также часто оборудуют разъёмами для подключения различных внешних датчиков и устройств вроде осветительных приборов и сигнализации. Мировая практика показывает, что основными производителя веб-камер становятся компании, изготавливающие компьютерную периферию (Genius , Logitech, SavitMicro) или сетевое оборудование (D-Link , SavitMicro ), а не видео - или фототехнику, что еще раз подчеркивает различие применяемых технологий.

Форматы сжатия видео изображения

В качестве начального шага обработки изображения форматы сжатия MPEG 1 и MPEG 2 разбивают опорные кадры на несколько равных блоков, над которыми затем производится дискетное косинусное преобразование (DCT). По сравнению с MPEG 1, формат сжатия MPEG 2 обеспечивает лучшее разрешение изображения при более высокой скорости передачи видео данных за счет использования новых алгоритмов сжатия и удаления избыточной информации, а также кодирования выходного потока данных. Также формат сжатия MPEG 2 дает возможность выбора уровня сжатия за счет точности квантования. Для видео с разрешением 352х288 пикселей формат сжатия MPEG 1 обеспечивает скорость передачи 1,2 – 3 Мбит/с, а MPEG 2 – до 4 Мбит/с.

По сравнению с MPEG 1, формат сжатия MPEG 2 обладает следующими преимуществами:

Как и JPEG2000, формат сжатия MPEG 2 обеспечивает масштабируемость различных уровней качества изображения в одном видеопотоке.

В формате сжатия MPEG 2 точность векторов движения увеличена до 1/2 пикселя.

Пользователь может выбрать произвольную точность дискретного косинусного преобразования.

В формат сжатия MPEG 2 включены дополнительные режимы прогнозирования.

Формат сжатия MPEG 2 использовал снятый сейчас с производства видеосервер AXIS 250S компании AXIS Communications, 16-канальный видеонакопитель VR-716 компании JVC Professional, видеорегистраторы компании FAST Video Security и многие другие устройства системы видеонаблюдения.

Формат сжатия MPEG 4

MPEG4 использует технологию так называемого фрактального сжатия изображений. Фрактальное (контурно-основанное) сжатие подразумевает выделение из изображения контуров и текстур объектов. Контуры представляются в виде т. н. сплайнов (полиномиальных функций) и кодируются опорными точками. Текстуры могут быть представлены в качестве коэффициентов пространственного частотного преобразования (например, дискретного косинусного или вейвлет-преобразования).

Диапазон скоростей передачи данных, который поддерживает формат сжатия видео изображений MPEG 4, гораздо шире, чем в MPEG 1 и MPEG 2. Дальнейшие разработки специалистов направлены на полную замену методов обработки, используемых форматом MPEG 2. Формат сжатия видео изображений MPEG 4 поддерживает широкий набор стандартов и значений скорости передачи данных. MPEG 4 включает в себя методы прогрессивного и чересстрочного сканирования и поддерживает произвольные значения пространственного разрешения и скорости передачи данных в диапазоне от 5 кбит/с до 10 Мбит/с. В MPEG 4 усовершенствован алгоритм сжатия, качество и эффективность которого повышены при всех поддерживаемых значениях скорости передачи данных. Разработка компании JVC Professional – веб-камера VN-V25U, входящая в линию сетевых устройств works, использует для обработки видео изображений формат сжатия MPEG 4.

Видео форматы

Видео формат определяет структуру видео файла, то как хранится файл на носителе информации(CD, DVD, жестком диске или канале связи). Обычно разные форматы имеют различные расширения файла(*.avi, *. mpg, *.mov и др)

MPG - Видеофайл, в котором содержится видео, закодированное MPEG1 или MPEG2.

Как вы замечали, обычно MPEG-4 фильмы имеют расширение AVI. Формат AVI (Audi o-Video Interleaved) был разработан корпорацией Microsoft для хранения и воспроизведения видеороликов. Представляет собой контейнер, в котором может быть что угодно, начиная от MPEG1 и заканчивая MPEG4. Он может содержать в себе потоки 4 типов - Video, Audio, MIDI, Text. Причем видеопоток может быть только один, тогда как аудио - несколько. В частности, AVI может содержать и только один поток - либо видео, либо аудио. Сам формат AVI не накладывает совершенно никаких ограничений на тип используемого кодека, ни для видео, ни для аудио - они могут быть любыми. Таким образом, в AVI файлах могут совершенно спокойно сочетаться любые видео - и аудиокодеки.

RealVideo формат, созданный компанией RealNetworks. RealVideo используется для живой телевизионной трансляции в Интернете. Например, телекомпания CNN одной из первых стала вещать в Сети. Обладает небольшим размером файла и самым низким качеством, зато вы, не особенно загружая свой канал связи, сможете посмотреть последний выпуск теленовостей на сайте выбранной вами телекомпании. Расширения RM, RA, RAM.

ASF - Потоковый формат от Microsoft.

WMV - Видеофайл, записанный в формате Windows Media.

DAT - Файл, скопированный с VCD(VideoCD)\SVCD диска. Содержит в себе MPEG1\2 видеопоток.

MOV - Формат Apple Quicktime.

Подключение к ПК или телевизору

Самый простой разъем - AV-выход RCA - попросту говоря "тюльпаны" - имеется в любой видеокамере, приспособлен для подключения к любой телевидеотехнике, и обеспечивает передачу аналогового видео с наибольшими потерями в качестве. Гораздо ценнее наличие в цифровых видеокамерах таких аналоговых входов - это позволяет оцифровывать Ваши архивы аналоговых записей, если у Вас прежде цифровой имелась аналоговая видеокамера. В "цифре" продлится срок их хранения, а также появится возможность редактирования их на компьютере. Видеокамеры форматов Hi8, Super VHS (-С), mini-DV (DV) и Digital8 оснащены S-video-разъемом, который, в отличие от RCA, передает раздельно сигналы цветности и яркости, что значительно уменьшает потери, заметно улучшает качество изображения. Наличие S-video-входа в цифровых моделях дает те же преимущества обладателям архивов записей Hi 8 или Super VHS. Встроенный инфракрасный передатчик LaserLink в видеокамерах Sony, с помощью приемного устройства IFT-R20, позволяет смотреть отснятый материал по телевизору, не подключаясь к нему проводами. Просто поставьте видеокамеру рядом с телевизором на расстоянии до 3 м и включайте "PLAY". Более усовершенствованный передатчик Super LaserLink, которым оснащаются все последние модели работает на большем расстоянии (до 7 м). Наличие в видеокамере монтажных разъемов позволяет осуществлять линейный монтаж, синхронизировав видеокамеру с видеомагнитофонами и монтажной декой. В таком случае на всех скомутированных между собой устройствах контролируются синхронно показания счетчика ленты и все основные режимы: воспроизведение, запись, стоп, пауза и перемотка. В видеокамерах Panasonic для этой цели служит разъем Control-M, в видеокамерах Sony - Control-L (LANC). Спецификации их несовместимы, поэтому рекомендуем уточнять соответствие интерфейса у видеомагнитофона и видеокамеры.

Разъем RS-232-C ("цифровой фотовыход")

Разъем для подключения видеокамеры к последовательному порту компьютера для передачи неподвижных кадров в цифровом виде и управления видеокамерой с ПК. В "навороченных" моделях вместо RS-232-C встроен еще более быстрый "фотовыход" - USB-интерфейс. Все видеокамеры mini-DV и Digital8 оснащены DV-выходом (i. LINK или IEEE 1394 или FireWire), обеспечивающим быструю передачу цифрового аудио/видеосигнала без потерь качества. Для этого Вам необходимо иметь другое устройство с поддержкой DV-формата - DV-видеомагнитофон или компьютер с DV-платой. Ценнее конечно же видеокамеры, имеющие, кроме выхода, также DV-вход. Некоторые фирмы производят одну и ту же модель в двух вариантах: т. н. "европейском" (без входов) и "азиатском" (с входами). Это объясняется высокими таможенными пошлинами в Европе на импорт цифровых видеомагнитофонов, к каковым справедливо можно отнести и видеокамеру с DV-входом. IEEE-1394, FireWire и i. LINK - это три названия одного и того же высокоскоростного цифрового последовательного интерфейса, который служит для передачи любых видов цифровой информации. IEEE-1394 (IEEE - Institute of Electrical and Electronics Engineers) Обозначение стандарта интерфейса, разработанного корпорацией Apple (под фирменным названием FireWire). Обозначение принято американским Институтом инженеров по электротехнике и радиоэлектронике (IEEE). Большинство видеокамер mini-DV и Digital8 оборудованы интерфейсом IEEE-1394, с помощью которого видеоинформация, представленная в цифровой форме, пересылается непосредственно на компьютер. Аппаратная часть включает в себя недорогой адаптер и четырехжильный или шестижильный кабель. Позволяет передавать данные со скоростью до 400 Мбит/с.

i. LINK

Цифровой вход/выход на базе стандарта IEEE 1394. Позволяет передавать отснятый видеоматериал на компьютер. Модели видеокамер с i. Link повышают гибкость работы за счет интерактивного монтажа, электронного хранения и рассылки изображений.

FireWire

Зарегистрированный товарный знак фирмы Apple, принимавшей активное участие в разработке стандарта. Название FireWire ("огненный провод") принадлежит фирме Apple и может использоваться только для описания ее изделий, а по отношению к таким устройствам на PC принято употреблять термин IEEE-1394, то есть непосредственно название стандарта;

Карта памяти

На этой карте Вы можете хранить в электронном виде фотографии, видеоролики, музыку. С ее помощью можно передавать изображение на компьютер.

Memory Stick

Карта памяти Memory Stick - фирменная разработка Sony - способна хранить одновременно записи изображения, речи, музыки, графики и текстовые файлы. Весом всего 4 грамма и по размеру не превосходящая пластинки жвачки, карта памяти надежна, имеет защиту от случайного стирания, 10-штырьковое соединение для большей надежности, частоту передачи данных - 20 МГц, скорость записи - 1,5 Мб/сек., скорость чтения - 2,45 Мб/сек. Вместимость цифровых стоп-кадров на карте емкостью 4 Мб (MSA-4A): в формате JPEG 640x480 режим SuperFine - 20 кадров, Fine - 40 кадров, Standard - 60 кадров; в формате JPEG 1152x864 режим SuperFine - 6 кадров, Fine - 12 кадров, Standard - 18 кадров. Вместимость MPEG Movies на карте емкостью 4 Мб (MSA-4A): в режиме Presentation (320x2,6 по 15 секунд; в режиме Video Mail (160x1,6 по 60 секунд.

SD Memory Card

SD-карта - карта памяти нового стандарта размером с почтовую марку позволяет хранить любые виды данных, включая разнообразные фото-, видео - и аудиоформаты. На данный момент доступны SD-карты емкостью 64, 32, 16 и 8 МB. До конца 2001 года в продажу поступят SD-карты емкостью до 256 МB. Одна SD-карта емкостью 64 Mb содержит примерно такое же количество музыки, как один CD-диск. Так как скорость передачи данных на SD-карту - 2 Мб/сек., перезапись с CD-диска займет всего 30 секунд. Поскольку SD Memory Card - это полупроводниковый носитель информации, вибрация не оказывает на нее никакого влияния, то есть здесь невозможен пропуск в звучании, встречающийся у вращающихся носителей типа CD или MD. Максимальное время звуковой записи на SD-карту 64 Mb: 64 минуты высокого качества (128 кбит/сек), 86 минут стандартного (96 кбит/сек) или 129 минут в LP-режиме (64 кбит/сек).

Популярные статьи

© 2024 sistemalaki.ru
Бизнес-идеи. Бизнес-планы. Франшизы. База знаний. Документы