Классификация помех. Авиационные средства РЭБ, их возможности по радиоэлектронному противодействию. Постановщика активных помех Министерство общего и профессионального образования


Ту-16СПС. Станции постановки активных радиопомех СПС-1 и СПС-2, которые устанавливались на Ту-16 в 1950-е гг., предназначались для групповой защиты летящих в строю ударных машин от РЛС, разработанных в сороковые годы, и обладали сравнительно невысокими характеристиками - недостаточной мощностью излучения, большими габаритами и весом. Для их применения требовался еще один член экипажа - оператор спецаппаратуры, который должен был вначале обнаружить работающий радар, определить его частоту, после чего настроить на нее передатчик помех. Для этого, даже при хорошей подготовке, оператору требовалось примерно 3 минуты. За это время, особенно при полетах на малых высотах, самолет успевал проскочить зону, из которой мощность бортовой аппаратуры позволяла подавить данную РЛС. Кроме того, СПС-1 и СПС-2 не обеспечивали эффективного подавления многоканальных и перестраиваемых станций.

Тем не менее, завод №1 в 1955-57 гг. выпустил 42 Ту-16, оборудованных СПС-1, и 102 - с СПС-2, из них четыре - заправляемых топливом в полете. Как и на Ту-16Р, в задней части грузоотсека этих машин устанавливалась герметичная съемная кабина спецоператора. В передней части грузоотсека можно было подвешивать бомбовое вооружение. Две антенны станции СПС-2, закрытые каплевидными обтекателями, размещались в нижней части фюзеляжа перед и за грузоотсеком. Штыревые антенны СПС-1 могли размещаться в двух местах: сверху фюзеляжа (за блистером штурмана-оператора) или снизу фюзеляжа (перед грузоотсеком). Эти варианты Ту-16 получили обозначение Ту-16СПС, иногда их называли Ту-16П. Первоначально Ту-16СПС не оснащались автоматами сброса отражателей АСО-16, и отсутствие их выводных горловин на створках бомбового отсека являлось внешним отличительным признаком от последующих Ту-16Е. Но позже автоматы стали устанавливать на этот тип самолета, и внешнее отличие исчезло. В 1960-е гг. практически все находившиеся в строю Ту-16СПС были оборудованы системой постановки активных помех «Букет».

Ту-16П. Во второй половине 1950-х гг. в СССР была разработана система «Букет», которая, в отличие от СПС-1 и СПС-2, могла работать в автоматическом режиме и создавать помехи одновременно нескольким РЛС, в том числе многоканальным и перестраиваемым. В систему «Букет» входили станции постановки активных помех СПС-22, СПС-33, СПС-44 и СПС-55, каждая из которых перекрывала определенный диапазон частот. Для Ту-16 были подготовлены специальные модификации станций с учетом условий их работы на самолете - СПС-22Н, СПС-ЗЗН, СПС-44Н и СПС-55Н (индекс «Н» означал, что станция предназначена для изделия «Н»). Самолеты, оборудованные системой «Букет», обозначались Ту-16П или изделие «НП» (иногда - Ту-16П «Букет» или Ту-16 «Букет»). Они предназначались для противодействия наземным РЛС дальнего обнаружения и наведения, а также РЛС целеуказания ЗРК. С высоты 10000-11000 м один постановщик помех мог прикрыть группу из нескольких самолетов, идущих в строю в условном круге диаметром 3000-5000 м в полусферической зоне с диаметром в основании 600-700 км.

Для своего времени «Букеты» были самыми мощными в мире помеховыми станциями, и существовавшие тогда способы защиты РЛС не спасали их от глушения. В то же время «Букеты» имели большой вес и обладали значительной энергоемкостью. Для их размещения использовали грузоотсек, при этом бомбардировочное вооружение и створки демонтировались полностью. Вместо них устанавливалась платформа с блоками «Букета», представлявшими собой вертикально стоящие цилиндрические контейнеры с системой наддува. Там же размещались четыре дополнительных преобразователя типа ПО-6000 и один - типа ПТ-6000, питавшие «Букет» переменным током. В задней части грузоотсека могла устанавливаться аппаратура постановки пассивных помех АСО-2Б. В нижней части платформы, по оси самолета располагался длинный коробообразный обтекатель (на 3/4 длины грузоотсека) антенн станции, который стал характерным внешним признаком Ту~16П. По краям платформы с обеих сторон находились отверстия системы кондиционирования блоков «Букета», закрывавшиеся обтекателями. Автоматизация станции позволяла обойтись без дополнительного члена экипажа - управлял ею штурман-оператор со своего рабочего места.

Начиная с 1962 г, системой «Букет» было оснащено: 34 самолета станцией СПС-22Н, 9 - СПС-ЗЗН, 28 - СПС-44Н и 20 - СПС-55Н. С переходом к полетам на малых высотах некоторые Ту-16П переоснащались станцией СПС-77, оптимизированной для работы в таких условиях. Дорабатывали не только Ту-16СПС, но и Ту-16 «Елка» (см. ниже), а также некоторые другие модификации самолета.

Опыт применения Ту-16П показал, что при плотном расположении летящих в строю ударных машин применение системы «Букет» чревато подавлением не только РЛС противника, но и своих же бортовых радиолокаторов. Поэтому «Букет» в 1972 г. пришлось доработать и дополнить специальной аппаратурой, способной излучать мощный сигнал с узкой диаграммой направленности луча, 10 самолетов Ту-16П (со станциями СПС-22Н и СПС-44Н) были оборудованы аппаратурой «Фикус». Пять ее направленных антенн с системой вращения устанавливались под фюзеляжем между шпангоутами №34 и №45 под большим радиопрозрачным обтекателем. Испытания усовершенствованной системы постановки помех проводились на Ту- 16П № 1882409 и № 1883117.


Постановщик помех Ту-16СПС



Постановщик помех Ту-16Е известен в НАТО под обозначением Badger-H



Ту-16А, задействованный для испытаний станции РЭП «Сирень»


На одну из серийных куйбышевских машин (№1882106) планировали установить опытную аппаратуру «Силикат», комплект агрегатов которой был полностью готов в марте 1956 г. Несколько позднее вместо «Силиката» на этот самолет установили новую систему постановки активных радиопомех «Фонарь», однако эти варианты в серийное производство запущены не были. Во второй половине 60-х гг. серийный Ту-16П №5202907 оборудовали станцией СПС-100 «Резеда-АК». С самолета сняли прицел «Аргон» и заднюю пушечную установку, а вместо нее установили хвостовой отсек с аппаратурой станции. В комплект СПС-100 входила и станция предупреждения об облучении СПО-3 «Сирена-3». В этом виде постановщик помех успешно прошел испытания, и систему СПС-100 приняли для Ту-16. Однако строевые Ту-16П ими не оснащались, их получили, начиная с 1969 гм некоторые другие модификации Ту-16. Несколько Ту-16П оборудовали станцией СПС-120 «Кактус», блоки которой также разместили в грузоотсеке на платформе.

В течение 1970-80 гг. оборудование Ту-16П постоянно модернизировалось. В частности, устанавливались станции индивидуальной и групповой защиты типа СПС-151, СПС-152 или СПС-153 из комплекта «Сирень». Блоки станций «Сирень» располагались в техническом отсеке фюзеляжа и в хвостовом контейнере-обтекателе, установленном вместо задней стрелковой установки ДК-7. Передающие антенны системы располагались по обоим бортам фюзеляжа в районе воздухозаборников двигателей, приемные -в районе первого шпангоута фюзеляжа.

Ту-16П с РПЗ-59. 21 июля 1959 г. вышло Постановление Совмина №832-372, которое предусматривало создание новой пассивной противорадиолокационной системы индивидуальной защиты Ту* 16. На основании этого документа на базе серийной УР класса «воздух-воздух» К-5 (К-51) ОКБ-134 разработало опытные образцы противорадиолокационной ракеты РПЗ-59 «Автострада-1». После пуска этой ракеты с Ту-16 из ее заднего отсека выбрасывались пачки дипольных отражателей, образуя перед самолетом облако пассивных помех. На держатели ДПУ-РПЗ в грузоотсеке Ту-16 можно было подвесить шесть ракет, запускаемых как одиночно, так и серией через определенные интервалы. Госиспытания системы проводились на доработанном Ту-16П №8204130 до начала 1964 г и показали, что в данном виде она неприемлема: полет ракет был неустойчивым и опасным для самолета-носителя, были случаи самопроизвольного схода ракет и т.д. С учетом полученного опыта в 1964 г. развернулось создание новой противорадиолокационной системы «Пилон», включающей самолет-носитель Ту-16П со станцией «Букет» и 12 ракет РПЗ-59, размещенных на подкрыльевых пилонах (по шесть под каждой плоскостью). С 1972 г. небольшое число Ту-16П было оборудовано такой системой.

Ту-16 «Елка» и Ту-16Е. Параллельно с созданием постановщика активных помех Ту- 16СПС в ОКБ-156 разрабатывался постановщик пассивных помех, получивший обозначение Ту-16 «Елка». Во всю длину его грузоотсека располагались 7 автоматов сброса пассивных помех АСО-16. В створках отсека имелись вырезы (на левой - три, на правой - четыре) для выводных горловин автоматов. В незанятом объеме отсека можно было подвешивать бомбовое вооружение. Кроме того, на Ту-16 «Елка» устанавливалась помеховая станция СПС-4 «Модуляция», ее обтекатель каплевидной формы крепился перед грузоотсеком. При снятии АСО-16 самолет превращался в полноценный бомбардировщик. В 60-е гг. на машины этой модификации в дополнение к семи АСО-16 стали устанавливать два автомата АПП-22. В этом случае места для размещения бомб уже не оставалось.

В 1957 г. завод №1 выпустил 42 серийных Ту-16 «Елка» с системой дозаправки топливом в полете, еще 10 машин в том же году сдал ВВС завод №64. Кроме того, 19 бомбардировщиков завода №22 были переоборудованы в этот вариант (все они имели систему дозаправки). Таким образом, в общей сложности ВВС получили 71 постановщик помех этой модификации. В дальнейшем самолеты Ту-16 «Елка» неоднократно модернизировались и дорабатывались, постепенно приближаясь по характеристикам к Ту-16ПТ становясь комбинированными постановщиками активных и пассивных помех.

Еще один вариант постановщика пассивных помех, получивший обозначение Ту-16Е или изделие «НЕ» (в частях эту модификацию также часто называли «Елка»), по составу помехового оборудования был близок к Ту-16Р. Так же, как и на разведчике, на нем в задней части грузоотсека устанавливалась кабина спецоператора и одна из станций СПС-1, СПС-2 или СПС-2К «Пион». Там же устанавливались два блока АСО-16. В передней части отсека сохранялись бомбодержатели, но со временем место бомб заняли дополнительные АСО-16, ставились также два автомата АПП-22. С 1957 г. в течение трех лет на заводе №1 был выпущен 51 Ту-16Е. Еще 38 машин в 1958 г. выпустил завод №22, все с системой дозаправки топливом в воздухе. Внешне Ту-16Е отличались от Ту-16 «Елка» вырезами в створках грузоотсека под входной люк кабины оператора.



Отличительным внешним признаком Ту-16 «Елка» стали выводные горловины для сброса дипольных отражателей



В грузоотсеках некоторых Ту-16 «Елка» и Ту-16Е установили станции СПС-61, СПС-62 , СПС-63, СПС-64, СПС-65 или СПС-66, которые объединялись общим названием «Азалия». В экипаж самолета, получившего обозначение Ту-16Е «Азалия», спецоператор не входил. На машинах с СПС-61, СПС-62 и СПС-63 устанавливались также станции СПС-6 «Лось», а на самолетах с СПС-64, СПС-65 и СПС-66 - станции СПС-5 «Фасоль». В незанятой части грузоотсека подвешивались бомбы или автоматы АСО-16 и АПП-22. На Ту-16 «Елка» антенна «Азалии» располагалась в передней части грузоотсека, а на Ту-16Е - на месте входного люка демонтированной подвесной гермокабины. На большинстве самолетов Ту-16Е «Азалия» вместо ДК-7 устанавливался хвостовой обтекатель.

В некоторых Ту-16 «Елка» и Ту-16Е «Азалия» устанавливались также станции постановки активных помех СПС-100А и СПС-100М, на части машин устанавливалась система оповещения об облучении СПО-15 «Береза». В конце 1970-х гг. на этих постановщиках помех начали размещать станции СПС-151, СПС-152 или СПС-153 из комплекта «Сирень». В эксплуатации машины постоянно дорабатывались как по составу оборудования, так и по самолетным системам. Несколько Ту-16Е было переоборудовано в вариант Ту-16ЕР, на котором вместо станции СПС-2 установили станции радиотехнической разведки СРС-1.

Ту-16Е-ХР. Еще один вариант постановщика помех обозначался в документах Ту-16Е, а в обиходе - Ту-16Е-ХР (химический разведчик). Этот самолет предназначался для ведения фотографической, радиотехнической, радиационной и химической разведки и по составу оборудования был очень близок к Ту-16РР Наличие на борту средств радиопротиводействия лишь способствовало выполнению задач воздушной разведки. Экипаж Ту-16Е-ХР состоял из семи человек. В носовой части грузоотсека на качающихся платформах размещались два аэрофотоаппарата АФА-42/100. в задней части отсека - подвесная гермокабина оператора. В средней части грузоотсека можно было подвешивать бомбы или до четырех автоматов АСО-16. Конструкцию крыла усилили, под крылом на пилонах подвешивались два контейнера для забора проб воздуха. Средства радиопротиводействия, кроме АСО-16, включали станции СПС-5, СПС-151 и два комплекта СПС-1. Антенны

СПС-5 располагались снизу фюзеляжа перед грузовым отсеком, СПС-151 - возле воздухозаборников двигателей, СПС-1

За подвесной гермокабиной снизу и сверху фюзеляжа. Подобным образом переоборудовали два самолета, выпущенных заводом №1. Один из них до 1978 г. эксплуатировался в 226-м ОАП РЭП (отдельном авиационном полку радиоэлектронного противодействия) в Полтаве, затем в 1978-80 гг. - в Прилуках, а с 1980 г.

В Спаске-Дальнем, где вторая машина отлетала всю свою жизнь. В 1979-80 гг. в процессе ремонта самолеты оснастили станциями «Роговица» и СПС-152 (дополнительные антенны установили на фонаре кабины штурмана-навигатора).

Общее количество вариантов постановщиков помех на базе Ту-16 однозначно определить практически невозможно. Так, например, 226-й ОАП РЭП имел в своем составе порядка тридцати Ту-16 с аппаратурой постановки помех, и каждый из них отличался от других составом и типом оборудования. С появлением на вооружении армий вероятного противника ракет с тепловыми головками самонаведения на части Ту-16, в том числе и на Ту-16П, стали размещать аппаратуру постановки инфракрасных помех типа АСО-2И-7ЕР, блоки которой устанавливались в обтекателях шасси и в хвостовой части фюзеляжа. Велись и другие работы по совершенствованию систем радиоэлектронного противодействия.

Постановщики помех

Для групповой защиты летящих в строю ударных машин от вражеских РЛС на Ту-16 устанавливались станции постановки активных радиопомех СПС-1 и СПС-2. Такие самолеты получили обозначение Ту-16 СПС. Эти станции обладали сравнительно невысокими характеристиками – недостаточной мощностью излучения, большими габаритами и весом. Кроме того, для их применения требовался еще один член экипажа – оператор спецаппаратуры, который должен был вначале обнаружить работающий радар, определить его частоту, после чего настроить на нее передатчик помех. Для этого, даже при хорошей подготовке, оператору требовалось примерно 3 минуты. За это время, особенно при полетах на малых высотах, самолет успевал проскочить зону, из которой мощность бортовой аппаратуры позволяла подавить данную РЛС.

Дальний разведчик советского ВМФ – Ту-16РМ Badger D. Badger D – самолет наиболее часто применявшийся советским флотом для выполнения разведывательных задач, во время патрулирования обычно работал вместе с другими вариантами Ту-16.

Основной отличительной чертой Ту-16РМ Badger D – морского разведчика/ самолета радиоэлектронной борьбы были три радиопрозрачных обтекателя ни брюхе фюзеляжи. Ножевая антенна прямо перед первым обтекателем – связная.

Ту-16РМ Badger D построенные путем переоборудования ракетоносцев Badger С сохраняли соответствующую носовую часть. Однако передний подфюзеляжный обтекатель на Badger D был больше чем на Badger С.

Во второй половине 1950-х гг. в СССР была разработана система «Букет», которая, в отличие от СПС-1 и СПС-2, могла работать в автоматическом режиме и создавать помехи одновременно нескольким РЛС, в том числе многоканальным и перестраиваемым. Самолеты, оборудованные системой «Букет», обозначались Ту-16П или изделие «НП». Они предназначались для противодействия наземным РЛС дальнего обнаружения и наведения, а также РЛС целеуказания ЗРК.

На то время «Букеты» были самыми мощными в мире помеховыми станциями, и существовавшие тогда способы защиты РЛС не спасали их от глушения. В то же время «Букеты» имели большой вес и обладали значительной энергоемкостью. Для их размещения использовали грузоотсек, при этом его створки и бомбардировочное вооружение демонтировались полностью. Вместо них устанавливалась платформа с блоками «Букета», представлявшими собой вертикально стоящие цилиндрические контейнеры с системой наддува. Там же размещались четыре дополнительных преобразователя типа ПО-6000 и один – типа ПТ-6000, питавшие «Букет» переменным током. В задней части грузоотсека могла устанавливаться аппаратура постановки пассивных помех АСО-2Б. В нижней части платформы, по оси самолета располагался длинный обтекатель (на 3/4 длины грузоотсека) антенн станции, который стал характерным внешним признаком Ту-16П. По краям платформы с обеих сторон находились отверстия системы кондиционирования блоков «Букета», закрывавшиеся обтекателями. Автоматизация станции позволяла обойтись без дополнительного члена экипажа – управлял ею штурман-оператор со своего рабочего места.

Начиная с 1962 г., системой «Букет» был оснащен 91 самолет.

Параллельно с созданием постановщика активных помех Ту-16СПС в ОКБ-156 разрабатывался постановщик пассивных помех, получивший обозначение Ту-16 «Елка». Во всю длину его грузоотсека располагались 7 автоматов сброса пассивных помех АСО-16. В створках отсека имелись вырезы (на левой – три, на правой – четыре) для выводных горловин автоматов. В незанятом объеме отсека можно было подвешивать бомбовое вооружение. Кроме того, на Ту-16 «Елка» устанавливалась помеховая станция СПС-4 «Модуляция», ее обтекатель каплевидной формы крепился перед грузоотсеком. При снятии АСО-16 самолет превращался в полноценный бомбардировщик. В 60-е гг. на машины этой модификации в дополнение к семи АСО-16 стали устанавливать два автомата АПП-22. В этом случае места для размещения бомб уже не оставалось. В общей сложности ВВС получили 71 постановщик помех этой модификации. В дальнейшем самолеты Ту-16 «Елка» неоднократно модернизировались и дорабатывались, постепенно приближаясь по характеристикам к Ту-16П, становясь комбинированными постановщиками активных и пассивных помех.

F/A – 18 корпуса морской пехоты следит с близкого расстояния за Ту-16Р Badger Е. Ту-16Р был одним из наиболее часто встречающихся самолетов советской морской авиации и период проведения учений военно-морскими силами США и НАТО.

F-4 Фантом II, британских ВВС, вооруженный подвесным контейнером с пушкой Вулкан, сопровождает Ту-16Р над Северным морем. Задние пушки Ту-16 подняты в крайнее верхнее положение, в знак мирных намерений.

Из книги Техника и вооружение 2006 08 автора Журнал «Техника и вооружение»

Шаг за шагом 2. Отечественные передатчики шумовых помех Ю.Н. Ерофеев, д.т.н., профессорПродолжение.Начало см. в «ТиВ» № 7/2006 г. Д.т.н. Николай Иванович Оганов, лауреат Ленинской премии (1902–1966).Первая разработка1 ноября 1943 г. в НИИ-108 («сто восьмой») был зачислен Николай

Из книги Ту-16 Ракетно бомбовый ударный комплекс Советских ВВС автора Сергеев П. Н.

Торпедоносцы, постановщики мин и спасательные самолеты С самого начала проектирования Ту-16 его предполагалось использовать не только в ВВС, но и в авиации ВМФ. 12 июля 1954 г. вышло Распоряжение Совета Министров СССР №7501 об оборудовании бомбардировщиков Ту-16

Из книги Погоня за «ястребиным глазом». Судьба генерала Мажорова автора Болтунов Михаил Ефимович

Из книги Морская минная война у Порт-Артура автора Крестьянинов Владимир Яковлевич

Постановщики мин. Во время Крымской войны русские минные заграждения выставлялись с плотов, шлюпок, катеров и небольших паровых судов. В кампанию 1855 г. постановки мин у Кронштадта обеспечивал речной пароход "Рюрик".В конце 1860-х годов в России появились специальные

Из книги Боевые самолеты Туполева автора

Из книги Неизвестный Яковлев [«Железный» авиаконструктор] автора Якубович Николай Васильевич

Постановщик помех Як-28ПП Последней модификацией бомбардировщика стал постановщик помех Як-28ПП. Самолет предназначался для борьбы с радиоэлектронными средствами противника, комплектовался на разных этапах системами «Букет», «Сирень», «Стрела» и «Фасоль». Под

Из книги Наука и техника в современных войнах автора Покровский Георгий Иосифович

IX. СРЕДСТВА НАРУШЕНИЯ СВЯЗИ, ПОМЕХ И ДЕЗОРИЕНТАЦИИ ПРОТИВНИКА Чрезвычайно быстрое развитие средств электрической связи привело к тому, что в течение ряда десятилетий эти средства применялись практически без существенных помех и противодействия со стороны противника.

Министерство общего и профессионального образования

Российской Федерации

Самарский государственный аэрокосмический университет

имени академика С. П. Королёва

Кафедра микроэлектроники

Курсовая работа по дисциплине:

Принципы инженерного творчества.

Пеленгатор постановщиков активных помех.

Студент гр. 535 Богданов Д. С.

Руководитель Шопин Г. П.

г. Самара


Курсовой проект.

Пояснительная записка содержит 23 с., 5 рис., 3 источника.

АМПЛИТУДНЫЙ ПЕЛЕНГАТОР, ПОСТАНОВЩИК АКТИВНЫХ ПОМЕХ, ДЕТЕКТОР-ИНТЕГРАТОР, ЭПЮРА ВЫХОДНОГО СИГНАЛА, ДИАГРАММА НАПРАВЛЕННОСТИ, УРОВЕНЬ ЛОЖНЫХ ТРЕВОГ, ОПИСАНИЕ ИЗОБРЕТЕНИЯ, ФОРМУЛА ИЗОБРЕТЕНИЯ, ДЕРЕВО ЦЕЛЕЙ И СРЕДСТВ.

В работе рассмотрен процесс внесения усовершенствований в конструкцию пеленгатора постановщиков активных помех. Произведен анализ конструкции прототипа, поиск и теоретическое решение противоречия, подбор конкретного технического решения для устранения противоречия. В результате работы получено новое устройство, обладающее более высокой чувствительностью по сравнению с прототипом при неизменном уровне ложных тревог.

Курсовая работа рассчитана на студентов, обучающихся по специальности 210201.


Введение........................................................................................................стр.4

1. Описание работы прототипа...................................................................стр.7

2. Формула изобретения прототипа...........................................................стр.10

3. Дерево целей и средств...........................................................................стр.11

4. Противоречия. Решение противоречий.................................................стр.12

5. Описание работы нового устройства.....................................................стр.13

6. Формула изобретения нового устройства.............................................стр.16

Заключение...................................................................................................стр.17

Список использованных источников.........................................................стр.19

Приложение..................................................................................................стр.20


Введение.

В настоящее время существует множество устройств радиолокации, радионавигации и пеленгации. Ими оснащаются современные морские суда, летательные аппараты, космические аппараты и т. д., причем как гражданские, так и военные. Препятствием для работы такого устройства может стать радиолокационная помеха. Радиолокационные помехи (более точный термин - противорадиолокационные помехи) – это умышленные помехи, затрудняющие или нарушающие в военных целях нормальную работу радиолокационных (РЛ) средств: радиолокационных станций (РЛС), головок самонаведения управляемых ракет или авиабомб, радиовзрывателей и т.д.

Различают активные и пассивные радиопомехи. Активные помехи создаются специальными приёмо-передающими или передающими радиоустройствами – станциями или передатчиками радиопомех, пассивные помехи – различными искусственными отражателями радиоволн. (К пассивным помехам относят также отражения радиоволн от местных предметов и природных образований, мешающие работе РЛС; эти помехи не имеют непосредственного отношения к умышленному радиопротиводействию). По характеру воздействия активные радиопомехи делят на маскирующие и имитирующие (дезориентирующие). Маскирующие помехи создаются хаотическими, шумовыми сигналами, среди которых трудно выделить сигналы, полученные от объектов; имитирующие - сигналами, похожими на сигналы от объектов, но содержащими ложную информацию. Активные маскирующие помехи часто имеют вид радиочастотных колебаний, модулированных шумами, или шумовых колебаний, подобных собственным шумам РЛ приёмника. В зависимости от ширины частотного спектра их подразделяют на прицельные, имеющие ширину спектра, соизмеримую с полосой пропускания РЛ приёмника, и заградительные, «перекрывающие» определённый участок радиочастотного диапазона. Активные помехи могут также иметь вид зондирующих РЛ сигналов, модулированных по амплитуде, частоте, фазе, времени задержки или поляризации (их формируют из зондирующих сигналов, принимаемых на станции помех). Такие помехи называются ответными, они могут быть как имитирующими, так и маскирующими.

Станции радиопомех размещают на защищаемых объектах или вне их. Современные самолётные станции помех обладают мощностью ~ 10-103 Вт в непрерывном режиме и на порядок выше - в импульсном; максимальное усиление антенны обычно 10-20 дБ. Мощности наземных и корабельных станций помех, как правило, выше. Для создания пассивных помех используют дипольные, ленточные, уголковые и диэлектрические линзовые отражатели, антенные решётки, надувные металлизированные баллоны и др. На индикаторах РЛС (на отдельных участках экрана электроннолучевой трубки или по всему экрану) помехи создают шумовой фон или ложные отметки объектов, что в значительной степени осложняет обнаружение объектов, целераспределение и сопровождение их. Воздействуя на устройства автоматического обнаружения и сопровождения объектов, помехи могут вызывать перегрузку устройств автоматической обработки данных, срыв автоматического сопровождения объектов, вносить большие ошибки в определение местоположения и параметров движения объектов.

В этих условиях естественно возникает борьба радиолокационных систем между собой, называемая радиопротиводействием. Неотъемлемой областью радиопротиводействия является пеленгация постановщиков активных помех.

Пеленгация – это определение направления на какой-либо объект через угловые координаты. Возможность пеленгации объекта обусловливается его контрастностью на окружающем фоне (различием физических свойств объекта и фона). Различают пассивную пеленгацию, когда используется естественную контрастность пеленгуемого объекта, и активную, когда объект облучается электромагнитными или звуковыми волнами от искусственного излучателя и наблюдается отражённое им излучение или ретранслированные сигналы (например, пеленгация с использованием лазерных источников излучения).

В зависимости от способа обработки принимаемых сигналов различают методы пеленгации. При пеленгации амплитудным методом производится изменение пространственного положения диаграммы направленности антенны передатчика или приёмника. Определение направления на пеленгуемый объект может осуществляться по максимуму или минимуму амплитуды принимаемого сигнала, а также способом сравнения. При пеленгации фазовым методом приём ведётся на разнесённые в пространстве антенны, стабилизированные в основных плоскостях; измеряемой величиной является разность фаз принимаемых антеннами сигналов, которая зависит от угловых координат объекта.

Одним из негативных явлений при пеленгации является ложная тревога, вероятность которой оценивается с помощью специального параметра – уровня ложных тревог. Как правило, снижение уровня ложных тревог (вероятности ложной тревоги) ведет за собой снижение чувствительности пеленгатора. Решение этого противоречия является основной задачей данной работы.


1. Описание работы прототипа.

Амплитудный пеленгатор для постановщиков активных помех (рис.1) содержит антенну 1, приемник 2,к которому подключены детектор-интегратор 3, блок 4 памяти и блок 5 усреднения усиления, выходы блоков 4 и 5 подключены к устройству 6 сравнения, подключенному в свою очередь к счетно-решающему блоку 7.

Для пояснения принципа работы используются эпюры выходных сигналов указанных блоков (за исключением блока 7) при сканировании по угловой координате в некоторой окрестности одного постановщика активных помех (ПАП) (рис.2).

На выходе антенны 1 имеется некоторый сигнал, представляющий собой стационарный релеевский случайный процесс с резким увеличением амплитуды колебаний и упорядочением частоты в момент пеленга (рис. 2, а). Сигнал попадает на приемник 2, где происходит усиление и удаление угловой модуляции (рис.2, б).

Далее сигнал проходит через детектор-интегратор 3, строящий огибающую амплитуды (рис. 2, в). С выхода детектора-интегратора 3 сигнал поступает в блок 4 памяти, где запоминается через промежутки времени t , значительно меньшие времени поворота антенны на всю ширину диаграммы направленности (рис.2, г), и в блок 5 усреднения усиления, где за некоторый промежуток времени T , включающий в себя t , и значительно больший формируется среднее значение напряжения. Наличие блока 5 усреднения усиления позволяет снизить вероятность ложных тревог, обусловленных случайными выбросами диаграммы направленности. Сигналы с блока 4 памяти и блока 5 усреднения усиления сравниваются между собой (рис.2, д) в устройстве 6 сравнения, и при превышении сигналом с блока 4 памяти значения сигнала с блока 5 усреднения усиления на выходе устройства 6 сравнения формируется сигнал, свидетельствующий о наличии пеленга (рис.2, е) в виде прямоугольного импульса, середина которого соответствует точному моменту пеленга.


Рисунок 1 - Структурная схема прототипа.

а) U U U

Решил повторить сам. 934 в наличии не было, поставил вместо них 911. Вещь получилась вполне - в здании в центе города (т.е. недалеко от ТВ и Радио вышки) на 2 х этажах почти не принимается FM радио(очень сильные помехи - ничего не разобрать). Телевизоры по всем каналам - изображение 0, звук 0. При приеме на внешнюю антенну (на крыше здания - до глушилки 2 этажа) на ДМВ на некоторых каналах пробивается звук, изображение можно сказать 0. Очень приятно удивлен работой данного глушака. Эффект от тетры гораздо меньше!

Вариант использования:

T1 BFR91A
T2 2Т610А без радиатора
T3 КТ913Б на радиаторе

Данные катушек:
L1 2W 0.4 D4
L2, L5 14W0.3 на клольце 10х6х4.5 М1500нн
L3 5W0.4 D4
L4 2W 1.0 D8
L6 3W 0.4 D4
L7 0.5W 0.7 D4
L8 27W 0.3 D5 (11mm)
L9 4W 0.4 STEP0.5 D4
L10 1W 1.0 D5
L11 17W 0.3 D5 (6mm)
C7,C8 “CD” 2kB 0.022mf или любые которые выдержат мощность.
Обычную керамику лучше не ставить.
Плата 1.5мм 2-х сторонняя обратная сторона подключена к массе около С5.

R6 100 Ом
Rx *18 Ом
*включить между L8 и +питания
Внимание ! Указаны МИНИМАЛЬНЫЕ безопасные значения Rx, лучше их не уменьшать. Я спалил свой единственный КТ913 когда попытался поднять ток коллектора до0.9А (близко к максимальному -1А по справочнику мать его!)

Результаты тестов:
Напряжение питания U=14.4V
I=0.7A
Напряжение ВЧ (Urf) на 50 Ом нагрузке = 12в.
При ОТКЛЮЧЕННОЙ антене (выход нагружен 50 Ом, питание через ВЧ фильтр) в радиусе 5-7м радио FM шипит во всем диапазоне, ТВ с комнатной антеной, направленной в противоположную сторону еле-еле ловит 3 ДМВ канала, LPD радиостанция открывает шумодав. При подключении куска провода 1м в радиусе 15-25м (дальше не проверял) FM радио и МВ полностью глушит, 2 ДМВ канала (самые живучие) принимаются на внешнюю антену 1 этажом выше с сильными помехами.

Другие транзисторы :

КТ920В Rx 11Ом I=0.9A Urf=14.5V
Убийца радиостанций! FM глушит по всему дому, тоже самое с МВ. Однако многие ДМВ каналы достаточно прилично принимаются на внешнюю антену.Основная мощность где то до 200-300 МГц

2Т911А Rx 18Ом I=0.4A Urf=8.5V
Похоже на КТ913, но меньше помех на ДМВ.

КТ939А Rx 27Ом I=0.3A Urf=10V
Шумит довольно плотно, но надежд не оправдал.При включении скакала мощьность, на 50 ом транзистор работал хорошо, НО когда была подключена антена шум почти пропал!
Скорее всего нужно просчитывать цепи согласования специально под него либо просто попался бракованный экземпляр либо я его подпалил как КТ913 т.к. изначально выставил ток колектора около 0.4А а это как потом оказалось его предел!

Подходят по параметрам, но не были протестированы в связи с отсутствием транзисторы:
КТ919, КТ925, КТ962, КТ916 и т.д.. Если у вас они есть пробуйте! И не забудьте подельться результатом.

Выводы :

Всем известная схема на 4-х КТ939 отдыхает т.к. данная конструкция стоит дешевле, мощьность выше, возможность согласования с антеной дает несравненно больший КПД.

Данный материал был взят с сайта http://www.vrtp.ru/

Определение координат и параметров движения

В зависимости от количества РЛС могут применяться способы одновременного пеленгования (триангуляционный способ по данным двух и более РЛС) и последовательного пеленгования (по данным одной РЛС).

Основным способом определения текущих координат и параметров полета постановщика активных помех является способ триангуляции.

Сущность его заключается в том, что место постановщика помех (область возможного нахождения) определяется в точке пересечения биссектрис углов засвеченных секторов на экранах двух и более взаимодействуюших РЛС. (Рис. 17.3.)

ОБУ, зная местоположение взаимодействующей РЛС (азимут, дальность), принимает от оператора РЛС значения азимутов постановщика помех и наносит их стеклографом на экран ИКО относительно взаимодействующей РЛС. Одновременно ОБУ наносит линии азимутов постановщика помех относительно своей РЛС.

Рис. 17.3. Определение координат постановщика активных помех

триангуляци­онным способом

По положению точек пересечения азимутов на экране ИКО определяются координаты постановщика помех (азимут и дальность), а по направлению и скорости перемещения точек пересечения азимутов – параметры движения постановщика помех (курс и скорость). (Рис. 17.4).

Рис. 17.4. Определение параметров движения постановщика

активных помех триангуляци­онным способом

Точность определения координат и параметров движения постановщика помех зависит от способа определения.

Для триангуляционного способа характерно следующее:

На дальности начала постановки помех 200÷ 250 км от РЛС среднеквадратические ошибки определения места постановщика составляют 6÷ 9 км;

На дальности 100÷ 120 км ошибки уменьшаются до 2÷ 2,5 км;

На дальности 200÷ 250 км ошибки в определении курса и скорости настолько велики, что пользоваться такими параметрами для решения задачи наведения нецелесообразно. Ошибки в определении курса достигают 30°, а в скорости – 300 км/ч.

При уменьшении дальности до 100 км ошибки в определении курса, скорости составляют 5° и 100 км/ч соответственно. Это обеспечивает решение задачи наведения с достаточной точностью.

При наличии одной РЛС координаты и параметры полета постановщика помех можно определить способом последовательного пеленгования.

Сущность способа заключается в том, что по предполагаемой скорости постановщика помех строится линейка масштабно-временных отрезков ∆S=Vц×∆t, состоящая из двух отрезков, и выполняется трехкратное пеленгование постановщика помех через время ∆t.



На ИКО наносятся линии азимутов постановщика помех Aз1, Aз2, Аз3 . Линейка прикладывается к ИКО таким образом, чтобы концы отрезков ∆S совпали с линиями азимутов.

Рис. 17.5. Определение параметров движения постановщика активных

помех при помощи линейки масштабно-временных отрезков

По положению конца второго отрезка и линии третьего азимута определяется местоположение постановщика помех (азимут, дальность), а по направлению отрезка ∆S – курс постановщика помех (Рис. 17.5.).

Высота полета постановщика помех определяется по экрану высотомера.

Для этого необходимо:

Медленным вращением антенны ПРВ определить средний азимут сектора помех по максимальному сигналу помехи;

Способом триангуляции определить азимут и дальность постановщика;

Повернуть антенну высотомера на азимут постановщика;

Провести линию посредине засвеченного сектора;

По соответствующей дальности найти точку пересечения указанной линии с линией сектора помех;

Определить высоту постановщика помех.

Популярные статьи

© 2024 sistemalaki.ru
Бизнес-идеи. Бизнес-планы. Франшизы. База знаний. Документы