Описать аэс. АЭС: принцип работы, особенности, история и интересные факты. Атомная электростанция: принцип работы

Современные атомные электростанции широко распространены во всем мире, так как они обладают высокой мощностью и производительностью. Первые атомные электростанции уступали новейшим АЭС по многим характеристикам. Строительство первых АЭС было начато в середине прошлого века.

Запуск первой АЭС в СССР

Разработка плана первой АЭС была начата после успешного испытания первой в СССР атомной бомбы, когда на ядерном реакторе вырабатывался плутоний, а также было организовано производство обогащенного урана. Масштабное обсуждение перспектив и основных проблем запуска ядерных электростанций для получения энергии пришлось на осень 1949 года.

Работы по возведению первой АЭС были запущены в середине 20 века. На протяжении 4-х лет с 1950 по 1954 год была построена первая атомная станция. Первая АЭС была официально введена в действие 27 июня 1954 года на территории Советского союза, в городе Обнинске. Функционирование этой АЭС обеспечивалось благодаря реактору АМ-1, предельная мощность которого составляла всего лишь 5 МВт.

Данная электростанция бесперебойно функционировала на протяжении практически 48 лет. В апреле 2002 года реактор станции был остановлен. Решение об остановке станции было принято ввиду экономических соображений и нецелесообразности ее дальнейшего применения. Обнинская АЭС стала не только первой запущенной, но и первой остановленной атомной электростанцией в России.

Значимость первой АЭС

Первые атомные электростанции в СССР смогли открыть дорогу применению атомной энергии с мирными целями. Эксплуатация самых первых АЭС также позволила накопить инженерный и научный опыт, необходимый для дальнейшего проектирования и возведения более крупных станций.

Возведенная в Обнинске атомная электростанция еще в период строительства трансформировалась в своеобразную школу для подготовки кадров, эксплуатационного персонала и научных сотрудников. Данную роль Обнинская АЭС осуществляла на протяжении нескольких десятилетий в ходе промышленного применения и большого количества проведенных на ней экспериментов.

Первые АЭС в разных странах

Продолжительный опыт эксплуатации первой советской атомной электростанции подтвердил практически все инженерные и технические решения, выдвинутые профессионалами в данной сфере. Это предоставило возможность построить и успешно запустить в 1964 году Белоярскую АЭС, мощность которой достигла 300 МВт.

В Британии самая первая АЭС была официально запущена только в октябре 1956 года. За пределами территории Советского союза данный объект стал первой станцией промышленного предназначения в своей категории. Мощность построенной в британском населенном пункте Колдер-Холл электростанции составляла 46 МВт на момент запуска. Несколькими годами позднее началось строительство еще нескольких крупных атомных электростанций.

На территории Соединенных Штатов первая АЭС начала свою работу в 1957 году. Электростанция мощностью 60 МВт расположилась в американском штате Шиппингпорт. США остановили возведение реакторов в 1979 году после глобальной аварии на АЭС Три-Майл-Айленд. Сооружение двух новых реакторов на основе прежней станции запланировано только на 2017 год.

Произошедшая в 1986 году крупная оказала серьезное воздействие на мировую и заставила пересмотреть ряд сопутствующих вопросов. Эксперты из разных стран активно начали решать проблему безопасности и задумались о важности международного взаимодействия с целью обеспечения максимальной безопасности АЭС.

На сегодняшний день в таких странах, как Индия, Канада, Россия, Индия, Корея, Китай, США и Финляндия, активно прорабатываются и внедряются программы дальнейшего развития атомной энергетики. В современных условиях, во всем мире на этапе возведения находятся 56 реакторов и еще 143 реактора предполагается соорудить до 2030 года.

Преимущества и недостатки использования АЭС

Во всем мире постоянно возрастает. При этом рост потребления увеличивается более ускоренными темпами, чем выработка энергии, а практическое применение современных перспективных технических решений в данной области по многим причинам начнется через несколько лет. Решением данной проблемы становится совершенствование ядерной энергетики и возведение новых атомных электростанций. Можно выделить следующие преимущества эксплуатации атомных электростанций:

  1. Высокая энергоемкость используемого топливного ресурса. При полноценном выгорании один килограмм урана выделяет количество энергии, сопоставимое с результатом сжигания около 50 тонн нефти, либо вдвое больше тонн каменного угля
  2. Способность вторичного применения ресурса после переработки. Расщепленный уран, в отличие от отходов органического топлива, может быть повторно использован для выработки энергии. Дальнейшее развитие атомных электростанций предполагает полноценный переход на замкнутый цикл, что поможет обеспечить отсутствие образования каких-либо вредных отходов
  3. Атомная станция не способствует образованию парникового эффекта. Каждый день атомные электростанции помогают избежать эмиссии около 600 миллионов тонн углекислого газа. Действующие на территории России АЭС каждый год задерживают поступление в окружающую среду более 200 миллионов тонн углекислого газа
  4. Абсолютная независимость от местонахождения источников топлива. Большая удаленность атомной электростанции от месторождения урана никак не влияет на возможность ее функционирования. Энергетический эквивалент ядерного ресурса во много раз больше, в сравнении с органическим топливом, и расходы на его транспортировку минимальны
  5. Невысокая стоимость использования. Для большого числа стран выработка электроэнергии при помощи АЭС не затратнее, чем на других типах электростанций

Несмотря на большое количество положительных сторон эксплуатации атомных электростанций, существует несколько проблем. Основной недостаток заключается в тяжких последствиях аварийных ситуаций, для предотвращения которых электростанции оснащаются довольно сложными системами безопасности с большими запасами и резервированием. Таким образом обеспечивается исключение повреждения центрального внутреннего механизма даже при масштабной аварии.

Большой проблемой для эксплуатации АЭС также является их уничтожение после выработки ресурсов. Стоимость их ликвидации может достигать 20% от всех затрат на их сооружение. Кроме того, по техническим соображениям для атомных электростанций является нежелательным функционирование в маневренных режимах.

Первые атомные электростанции в мире позволили сделать большой шаг в усовершенствовании ядерной энергетики. В современных условиях в России около 17% электроэнергии вырабатывается именно при помощи АЭС. По причине выгоды эксплуатации АЭС многие страны приступают к строительству новых реакторов и рассматривают их как перспективный источник электроэнергии.

Предложение о создании реактора АМ будущей АЭС впервые прозвучало 29 ноября 1949 г. на совещании научного руководителя атомного проекта И.В. Курчатова, директора Института физпроблем А.П. Александрова, директора НИИХимаша Н.А. Доллежаля и учёного секретаря НТС отрасли Б.С. Позднякова. Совещание рекомендовало включить в план НИР ПГУ на 1950 г. «проект реактора на обогащённом уране с небольшими габаритами только для энергетических целей общей мощностью по тепловыделению в 300 единиц, эффективной мощностью около 50 единиц» с графитом и водяным теплоносителем. Тогда же были даны поручения о срочном проведении физических расчётов и экспериментальных исследований по этому реактору.

Позднее И.В. Курчатов и А.П. Завенягин объясняли выбор реактора АМ для первоочередного строительства тем, «что в нём может быть более, чем в других агрегатах, использован опыт обычной котельной практики: общая относительная простота агрегата облегчает и удешевляет строительство».

В этот период на разных уровнях обсуждаются варианты использования энергетических реакторов.

ПРОЕКТ

Было признано целесообразным начать с создания реактора для корабельной энергетической установки. В обосновании проекта этого реактора и для «принципиального подтверждения... практической возможности преобразования тепла ядерных реакций атомных установок в механическую и электрическую энергии» было решено построить в Обнинске, на территории Лаборатории «В» , атомную электростанцию с тремя реакторными установками, в том числе и установкой АМ, ставшей реактором Первой АЭС).

Постановлением СМ СССР от 16 мая 1950 г. НИОКР по АМ поручались ЛИПАН (институт И.В. Курчатова), НИИХиммаш, ГСПИ-11, ВТИ). В 1950 - начале 1951 гг. эти организации провели предварительные расчёты (П.Э. Немировский, С.М. Фейнберг, Ю.Н. Занков), предварительные проектные проработки и др., затем все работы по этому реактору были, по решению И.В. Курчатова, переданы в Лабораторию «В» . Научным руководителем назначен , главным конструктором - Н.А. Доллежаль.

Проектом были предусмотрены следующие параметры реактора: тепловая мощность 30 тыс. кВт, электрическая мощность - 5 тыс. кВт, тип реактора - реактор на тепловых нейтронах с графитовым замедлителем и охлаждением натуральной водой.

К этому времени в стране уже был опыт создания реакторов такого типа (промышленные реакторы для наработки бомбового материала), но они существенно отличались от энергетических, к которым относится реактор АМ. Сложности были связаны с необходимостью получения в реакторе АМ высоких температур теплоносителя, из чего следовало, что придётся вести поиск новых материалов и сплавов, выдерживающих эти температуры, устойчивых к коррозии, не поглощающих нейтроны в больших количествах и др. Для инициаторов строительства АЭС с реактором АМ эти проблемы были очевидны изначально, вопрос был в том, как скоро и насколько удачно их удастся преодолеть.

РАСЧЁТЫ И СТЕНД

К моменту передачи работы по АМ в Лабораторию «В» проект определился только в общих чертах. Оставалось много физических, технических и технологических проблем, которые предстояло решить, и их число возрастало по мере работы над реактором.

Прежде всего, это касалось физических расчётов реактора, которые приходилось вести, не имея многих необходимых для этого данных. В Лаборатории «В» некоторыми вопросами теории реакторов на тепловых нейтронах занимался Д.Ф. Зарецкий, а основные расчёты проводились группой М.Е. Минашина в отделе А.К. Красина . М.Е. Минашина особенно беспокоило отсутствие точных значений многих констант. Организовать их измерение на месте было сложно. По его инициативе часть из них постепенно пополнялась в основном за счёт измерений, проведённых ЛИПАН и немногих в Лаборатории «В» , но в целом нельзя было гарантировать высокую точность рассчитываемых параметров. Поэтому в конце февраля - начале марта 1954 г. был собран стенд АМФ - критсборка реактора АМ, которая подтвердила удовлетворительное качество расчётов. И хотя на сборке нельзя было воспроизвести все условия реального реактора, результаты поддержали надежду на успех, хотя сомнений оставалось много.

На этом стенде 3 марта 1954 г. была впервые в Обнинске осуществлена цепная реакция деления урана.

Но, учитывая, что экспериментальные данные постоянно уточнялись, совершенствовалась методика расчётов, вплоть до запуска реактора продолжалось изучение величины загрузки реактора топливом, поведение реактора в нестандартных режимах, вычислялись параметры поглощающих стержней и др.

СОЗДАНИЕ ТВЭЛА

С другой важнейшей задачей - созданием тепловыделяющего элемента (твэла) - блестяще справились В.А. Малых и коллектив технологического отдела Лаборатории «В» . Разработкой твэла занималось несколько смежных организаций, но только вариант, предложенный В.А. Малых , показал высокую работоспособность. Поиск конструкции был завершён в конце 1952 г. разработкой нового типа твэла (с дисперсионной композицией уран-молибденовой крупки в магниевой матрице).

Этот тип твэла позволял проводить их отбраковку на предреакторных испытаниях (в Лаборатории «В» для этого были созданы специальные стенды), что очень важно для обеспечения надёжной работы реактора. Устойчивость нового твэла в нейтронном потоке изучалась в ЛИПАН на реакторе МР. В НИИХиммаше были разработаны рабочие каналы реактора.

Так впервые в нашей стране была решена, пожалуй, самая главная и самая сложная проблема зарождающейся атомной энергетики – создание тепловыделяющего элемента.

СТРОИТЕЛЬСТВО

В 1951 г., одновременно с началом в Лаборатории «В» исследовательских работ по реактору АМ, на её территории началось строительство здания атомной станции.

Начальником строительства был назначен П.И. Захаров, главным инженером объекта - .

Как вспоминал Д.И. Блохинцев, «здание АЭС в важнейших своих частях имело толстые стены из железобетонного монолита, чтобы обеспечить биологическую защиту от ядерного излучения. В стены закладывались трубопроводы, каналы для кабеля, для вентиляции и т.п. Ясно, что переделки были невозможны, и поэтому при проектировании здания, по возможности, предусматривались запасы с расчётом на предполагаемые изменения. На разработку новых видов оборудования и на выполнение научно-исследовательских работ давались научно-технические задания для «сторонних организаций» – институтов, конструкторских бюро и предприятий. Часто эти сами задания не могли быть полными и уточнялись и дополнялись по мере проектирования. Основные инженерно-конструкторские решения... разрабатывались конструкторским коллективом во главе с Н.А. Доллежалем и его ближайшим помощником П.И. Алещенковым...»

Стиль работы по строительству первой АЭС характеризовался быстрым принятием решений, скоростью разработок, определённой выработанной глубиной первичных проработок и способами доработки принимаемых технических решений, широким охватом вариантных и страхующих направлений. Первая АЭС была создана за три года.

ПУСК

В начале 1954 г. началась проверка и опробование различных систем станции.

9 мая 1954 года в Лаборатории "В" началась загрузка активной зоны реактора АЭС топливными каналами. При внесении 61-го топливного канала было достигнуто критическое состояние, в 19 ч. 40 мин. В реакторе началась цепная самоподдерживающаяся реакция деления ядер урана. Состоялся физический пуск атомной электростанции.

Вспоминая о пуске, писал: «Постепенно мощность реактора увеличивалась, и наконец где-то около здания ТЭЦ, куда подавался пар от реактора, мы увидели струю, со звонким шипением вырывавшуюся из клапана. Белое облачко обыкновенного пара, и к тому же еще недостаточно горячего, чтобы вращать турбину, показалось нам чудом: ведь это первый пар, полученный на атомной энергии. Его появление послужило поводом для объятий, поздравлений «с легким паром» и даже для слез радости. Наше ликование разделял и И.В. Курчатов, принимавший участие в работе в те дни. После получения пара с давлением 12 атм. и при температуре 260 °C стало возможным изучение всех узлов АЭС в условиях, близких к проектным, а 26 июня 1954 г., в вечернюю смену, в 17 час. 45 мин., была открыта задвижка подачи пара на турбогенератор, и он начал вырабатывать электроэнергию от атомного котла. Первая в мире атомная электростанция встала под промышленную нагрузку».

«В Советском Союзе усилиями ученых и инженеров успешно завершены работы по проектированию и строительству первой промышленной электростанции на атомной энергии полезной мощностью 5000 киловатт. 27 июня атомная станция была пущена в эксплуатацию и дала электрический ток для промышленности и сельского хозяйства прилежащих районов.»

Ещё до пуска была подготовлена первая программа экспериментальных работ на реакторе АМ, и вплоть до закрытия станции он был одной из основных реакторных баз, на которых проводились нейтронно-физические исследования, исследования по физике твёрдого тела, испытания твэлов, ЭГК, наработка изотопной продукции и др. На АЭС прошли подготовку экипажи первых атомных подводных лодок, атомного ледокола «Ленин», персонал советских и зарубежных АЭС.

Пуск АЭС для молодого коллектива института стал первой проверкой на готовность к решению новых и более сложных задач. В начальные месяцы работы доводили отдельные агрегаты и системы, подробно изучали физические характеристики реактора, тепловой режим оборудования и всей станции, дорабатывали и исправляли различные устройства. В октябре 1954 г. станция была выведена на проектную мощность.

«Лондон, 1 июля (ТАСС). Сообщение о пуске в СССР первой промышленной электростанции на атомной энергии широко отмечается английской печатью, Московский корреспондент «Дейли уоркер» пишет, что это историческое событие «имеет неизмеримо большее значение, чем сброс первой атомной бомбы на Хиросиму.

Париж, 1 июля (ТАСС). Лондонский корреспондент агентства Франс Пресс передает, что сообщение о пуске в СССР первой в мире промышленной электростанции, работающей на атомной энергии, встречено в лондонских кругах специалистов-атомников с большим интересом. Англия, продолжает корреспондент, строит атомную электростанцию в Колдерхолле. Полагают, что она сможет вступить в строй не ранее чем через 2,5 года...

Шанхай, 1 июля (ТАСС). Откликаясь на пуски в эксплуатацию советской электростанции на атомной энергии, токийское радио передает: США и Англия также планируют строительство атомных электростанций, но завершение их строительства они намечают на 1956-1957 годы. То обстоятельство, то Советский Союз опередил Англию и Америку в деле использования атомной энергии в мирных целях, говорит о том, что советские ученые добились больших успехов в области атомной энергии. Один из выдающихся японских специалистов в области ядерной физики - профессор Иосио Фудзиока, комментируя сообщение о пуске в СССР электростанции на атомной энергии, заявил, что это является началом «новой эры».

Атомные электростанции

Атомные электростанции представляют собой, ядерные установки производящие энергию, соблюдая при этом заданные режимы при определённых условиях. Для этих целей используется определённая проектом территория, где для выполнения поставленных задач используют ядерные реакторы в комплексе с необходимыми системами, устройствами, оборудованием и сооружениями. Для выполнения целевых задач привлекается специализированный персонал.

Все атомные электростанции России

История атомной энергетики у нас в стране и за рубежом

Вторая половина 40 –х гг., ознаменовалась началом работ по созданию первого проекта, предполагающего использование мирного атома для генерации электроэнергии. В 1948 году, И.В. Курчатов, руководствуясь заданием партии и советского правительства, внёс предложение о начале работ по практическому использованию атомной энергии, для вырабатывания электроэнергии.

Спустя два года, в 1950г., неподалёку от посёлка Обнинское, расположенного в Калужской области, был дан старт строительству первой на планете АЭС. Запуск первой в мире промышленной атомной электростанции, мощность которой, составляла 5МВт, состоялся 27.06.1954г. Советский Союз стал первой в мире державой, которой удалось применить атом в мирных целях. Станция была открыта в получившем к тому времени статус города, Обнинске.

Но советские учёные не остановились на достигнутом, ими были продолжены работы в этом направлении, в частности всего четыре года спустя в 1958г., была начата эксплуатация первой очереди Сибирской АЭС. Её мощность в разы превосходила станцию в Обнинске и составляла 100МВт. Но для отечественных учёных и это, не было пределом, по завершению всех работ, проектная мощность станции составила 600МВт.

На просторах Советского Союза, строительство АЭС, приняло по тем временам, массовые масштабы. В том же году, была развёрнута стройка Белоярской АЭС, первая очередь которой, уже в апреле 1964 году снабдила первым потребителей. География строительства атомных станций, опутала своей сетью всю страну, в этом же году запустили первый блок АЭС в Воронеже, его мощность равнялась 210МВт, второй блок запущенный пять лет спустя в 1969 году, мог похвастаться мощностью в 365МВт. бум строительства АЭС, не стихал на протяжении всей советской эпохи. Новые станции, или дополнительные блоки уже построенных, запускались с периодичностью в несколько лет. Так, уже в 1973 году, собственную АЭС, получил Ленинград.

Однако Советская держава не была единственной в мире, кому было под силу осваивать такие проекты. В Великобритании, также не дремали и, понимая перспективность данного направления, активно изучали этот вопрос. Спустя всего два года, поле открытия станции в Обнинске, англичане запустили собственный проект по освоению мирного атома. В 1956г, городке Колдер – Холл британцами была запущенная своя станция, мощность которой, превышала советский аналог и составляла 46МВт. Не отставали и на другом берегу Атлантики, год спустя американцы торжественно запустили в эксплуатацию станцию в Шиппингпорте. Мощность объекта составила 60МВт.

Однако освоение мирного атома таило в себе скрытые угрозы, о которых вскоре узнал весь мир. Первой ласточкой стала крупная авария в Три – Майл – Айленд произошедшая в 1979г., ну а вслед за ней произошла катастрофа поразившая весь мир, в Советском Союзе, в небольшом городе Чернобыле произошла крупномасштабная катастрофа, это случилось в 1986году. Последствия трагедии были невосполнимы, но кроме этого, данный факт, заставил задуматься весь мир о целесообразности использования ядерной энергии в мирных целях.

Мировые светила в данной отрасли, всерьёз задумались о повышении безопасности ядерных объектов. Итогом стало проведение учредительной ассамблеи, которая была организована 15.05.1989г в советской столице. На ассамблее приняли решение о создании Всемирной ассоциации, в которую должны войти все операторы атомных электростанций, её общепризнанной аббревиатурой является WANO. В ходе реализации своих программ, организация планомерно следит за повышением уровня безопасности атомных станций в мире. Однако, несмотря на все приложенные усилия, даже самые современные и на первый взгляд кажущиеся безопасными объёкты, не выдерживают натиска стихий. Именно по причине эндогенной катастрофы, которая проявилась в форме землетрясения и последовавшего за ним цунами в 2011 году произошла авария на станции Фукусима – 1.

Атомный блэкаут

Классификация АЭС

Атомные станции классифицируются по двум признакам, по виду энергии которую они выпускают и по типу реакторов. В зависимости от типа реактора определяется количество вырабатываемой энергии, уровень безопасности, а также то, какое именно сырьё применяется на станции.

По типу энергии, которую производят станции, они делятся на два вида:

Атомные электростанции. Их основной функцией является выработка электрической энергии.

Атомные теплоэлектростанции. За счёт установленных там теплофикационных установок, использующих тепловые потери, которые неизбежны на станции, становится возможен нагрев сетевой воды. Таким образом, данные станции помимо электроэнергии вырабатывают тепловую энергию.

Исследовав множество вариантов, учёные пришли к выводу, что наиболее рациональными являются три их разновидности, которые в настоящее время и применяются во всём мире. Они отличаются по ряду признаков:

  1. Используемое топливо;
  2. Применяемые теплоносители;
  3. Активные зоны, эксплуатируемые для поддержания необходимой температуры;
  4. Тип замедлителей, определяющий снижение скорости нейтронов, которые выделяются при распаде и так необходимые, для поддержки цепной реакции.

Самым распространённым типом, является реактор, использующий в качестве топлива обогащённый уран. В качестве теплоносителя и замедлителя здесь используется обыкновенная или лёгкая вода. Такие реакторы называют лёгководными, их известно две разновидности. В первом, пар служащий для вращения турбин, образуется в активной зоне, называемой кипящим реактором. Во втором, образование пара происходит во внешнем контуре, который связан с первым контуром посредством теплообменников и парогенераторов. Данный реактор, начали разрабатывать в пятидесятых годах прошлого столетия, основой для них, были армейские программы США. Параллельно, примерно в эти же сроки, в Союзе разработали кипящий реактор, в качестве замедлителя у которого, выступал графитовый стержень.

Именно тип реактора с замедлителем данного типа и нашёл применение на практике. Речь идёт о газоохлаждаемом реакторе. Его история началась в конце сороковых, начале пятидесятых годов XX века, первоначально разработки данного типа использовались при производстве ядерного оружия. В связи с этим, для него подходят два вида топлива, это оружейный плутоний и природный уран.

Последним проектом, которому сопутствовал коммерческий успех, стал реактор, где в качестве теплоносителя применяется тяжёлая вода, в качестве топлива используется уже хорошо нам знакомый природный уран. Первоначально, такие реакторы проектировали несколько стран, но в итоге их производство сосредоточилось в Канаде, чему служит причиной, наличие в этой стране массовых залежей урана.

Ториевые АЭС -- энергетика будущего?

История совершенствования типов ядерных реакторов

Реактор первой на планете АЭС, представлял собой весьма разумную и жизнеспособную конструкцию, что и было доказано в ходе многолетней и безупречной работы станции. Среди его составных элементов выделяли:

  1. боковую водную защиту;
  2. кожух кладки;
  3. верхнее перекрытие;
  4. сборный коллектор;
  5. топливный канал;
  6. верхнюю плиту;
  7. графитовую кладку;
  8. нижнюю плиту;
  9. распределительный коллектор.

Основным конструкционным материалом для оболочек ТВЭЛ и технологических каналов была избрана нержавеющая сталь, на тот момент, не было известно о циркониевых сплавах, которые могли бы, подходить по свойствам для работы с температурой 300°С. Охлаждение такого реактора осуществлялось водой, при этом давление под которым она подавалась, составляло 100ат. При этом выделялся пар с температурой 280°С, что является вполне умеренным параметром.

Каналы ядерного реактора были сконструированы таким образом, чтобы была возможность их полностью заменить. Это связано с ограничением ресурса, которое обусловлено временем нахождения топлива в зоне активности. Конструкторы не нашли оснований рассчитывать на то, что конструкционные материалы расположенные в зоне активности под облучением, смогут выработать весь свой ресурс, а именно порядка 30 лет.

Что касается конструкции ТВЭЛ, то было решено принять трубчатый вариант с односторонним механизмом охлаждения

Это уменьшало вероятность того, что продукты деления попадут в контур в случае повреждения ТВЭЛ. Дл регуляции температуры оболочки ТВЭЛ, применили топливную композицию ураномолибденового сплава, который имел вид крупки, диспергированной посредством тепловодной матрицы. Обработанное таким образом ядерное горючее позволило получить высоконадёжные ТВЭЛ. которые были способны работать при высоких тепловых нагрузках.

Примером следующего витка развития мирных ядерных технологий может, послужить печально известная Чернобыльская АЭС. На тот момент технологии, применённые при её строительстве, считались наиболее передовыми, а тип реактора современнейшим в мире. Речь идёт о реакторе РБМК – 1000.

Тепловая мощность одного такого реактора достигала 3200МВт, при этом он располагает двумя турбогенераторами, электрическая мощность которых, достигает 500МВт, таким образом, один энергоблок обладает электрической мощностью 1000МВт. В качестве топлива для РБМК использовалась обогащённая двуокись урана. В исходном состоянии перед началом процесса одна тонна такого топлива содержит порядка 20кг горючего, а именно урана – 235. При стационарной загрузке двуокиси урана в реактор масса вещества составляет 180т.

Но процесс загрузки не представляет собой навал, в реактор помещают тепловыделяющие элементы, уже хорошо нам известные ТВЭЛ. По сути, они являются трубками, для создания которых применён циркониевый сплав. В качестве содержимого, в них помещаются таблетки двуокиси урана, обладающие цилиндрической формой. В зоне активности реактора их помещают в тепловыделяющие сборки, каждая из которых объединяет 18 ТВЭЛ.

Таких сборок в подобном реакторе насчитывается до 1700 штук, и размещаются они в графитовой кладке, где специально для этих целей сконструированы технологические каналы вертикальной формы. Именно в них происходит циркуляция теплоносителя, роль которого, в РМБК, выполняет вода. Водоворот воды происходит при воздействии циркуляционных насосов, коих насчитывается восемь штук. Реактор находится внутри шахты, а графическая кладка находится в цилиндрическом корпусе толщиной в 30мм. Опорой всего аппарата является бетонное основание, под которым находится бассейн – барботер, служащий для локализации аварии.

Третье поколение реакторов использует тяжёлую воду

Основным элементом которой, является дейтерий. Наиболее распространённая конструкция носит название CANDU, она была разработана в Канаде и широко применяется по всему миру. Ядро таких реакторов располагается в горизонтальном положении, а роль нагревательной камеры играют резервуары цилиндрической формы. Топливный канал тянется через всю нагревательную камеру, каждый из таких каналов, обладает двумя концентрическими трубками. Существуют внешняя и внутренняя трубки.

Во внутренней трубке, топливо находится под давлением теплоносителя, что позволяет дополнительно заправлять реактор в процессе работы. Тяжёлая вода с формулой D20 используется в качестве замедлителя. В ходе замкнутого цикла происходит прокачка воды по трубам реактора, содержащего пучки топлива. В результате ядерного деления выделяется тепло.

Цикл охлаждения при использовании тяжёлой воды заключается в прохождении через парогенераторы, где от выделяемого тяжёлой водой тепла закипает обыкновенная вода, в результате чего, образуется пар, выходящий под высоким давлением. Он распределяется обратно в реактор, в результате чего возникает замкнутый цикл охлаждения.

Именно по такому пути, происходило пошаговое совершенствование типов ядерных реакторов, которые использовались и используются в различных странах мира.

Атомная электростанция (АЭС) - комплекс технических сооружений , предназначенных для выработки электрической энергии путем использования энергии, выделяемой при контролируемой ядерной реакции.

В качестве распространенного топлива для атомных электростанций применяется уран. Реакция деления осуществляется в основном блоке атомной электростанции - ядерном реакторе.

Реактор смонтирован в стальном корпусе, рассчитанном на высокое давление - до 1,6 х 107 Па, или 160 атмосфер.
Основными частями ВВЭР-1000 являются:

1. Активная зона, где находится ядерное топливо, протекает цепная реакция деления ядер и выделяется энергия.
2. Отражатель нейтронов, окружающий активную зону.
3. Теплоноситель.
4. Система управления защиты (СУЗ).
5. Радиационная защита.

Теплота в реакторе выделяется за счет цепной реакции деления ядерного топлива под действием тепловых нейтронов. При этом образуются продукты деления ядер, среди которых есть и твердые вещества, и газы - ксенон, криптон. Продукты деления обладают очень высокой радиоактивностью, поэтому топливо (таблетки двуокиси урана) помещают в герметичные циркониевые трубки - ТВЭЛы (тепловыделяющие элементы). Эти трубки объединяются по несколько штук рядом в единую тепловыделяющую сборку. Для управления и защиты ядерного реактора используются регулирующие стержни, которые можно перемещать по всей высоте активной зоны. Стержни изготавливаются из веществ, сильно поглощающих нейтроны - например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции. Перемещение стержней производится дистанционно с пульта управления. При небольшом перемещении стержней цепной процесс будет либо развиваться, либо затухать. Таким способом регулируется мощность реактора.

Схема станции - двухконтурная. Первый, радиоактивный, контур состоит из одного реактора ВВЭР 1000 и четырех циркуляционных петель охлаждения. Второй контур, нерадиоактивный, включает в себя парогенераторную и водопитательную установки и один турбоагрегат мощностью 1030 МВт. Теплоносителем первого контура является некипящая вода высокой чистоты под давлением в 16 МПа с добавлением раствора борной кислоты - сильного поглотителя нейтронов, что используется для регулирования мощности реактора.

1. Главными циркуляционными насосами вода прокачивается через активную зону реактора, где она нагревается до температуры 320 градусов за счет тепла, выделяемого при ядерной реакции.
2. Нагретый теплоноситель отдает свою теплоту воде второго контура (рабочему телу), испаряя ее в парогенераторе.
3. Охлажденный теплоноситель вновь поступает в реактор.
4. Парогенератор выдает насыщенный пар под давлением 6,4 МПа, который подается к паровой турбине.
5. Турбина приводит в движение ротор электрогенератора.
6. Отработанный пар конденсируется в конденсаторе и вновь подается в парогенератор конденсатным насосом. Для поддержания постоянного давления в контуре установлен паровой компенсатор объема.
7. Теплота конденсации пара отводится из конденсатора циркуляционной водой, которая подается питательным насосом из пруда охладителя.
8. И первый, и второй контур реактора герметичны. Это обеспечивает безопасность работы реактора для персонала и населения.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях).

Безопасность и экологичность работы реактора обеспечиваются жестким выполнением регламента (правил эксплуатации) и большим количеством контрольного оборудования. Все оно предназначено для продуманного и эффективного управления реактором.
Аварийная защита ядерного реактора - совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора.

Активная аварийная защита автоматически срабатывает при достижении одним из параметров ядерного реактора значения, которое может привести к аварии. В качестве таких параметров могут выступать: температура, давление и расход теплоносителя, уровень и скорость увеличения мощности.

Исполнительными элементами аварийной защиты являются, в большинстве случаев, стержни с веществом, хорошо поглощающим нейтроны (бором или кадмием). Иногда для остановки реактора жидкий поглотитель впрыскивают в контур теплоносителя.

Дополнительно к активной защите, многие современные проекты включают также элементы пассивной защиты . Например, современные варианты реакторов ВВЭР включают "Систему аварийного охлаждения активной зоны" (САОЗ) - специальные баки с борной кислотой, находящиеся над реактором. В случае максимальной проектной аварии (разрыва первого контура охлаждения реактора), содержимое этих баков самотеком оказываются внутри активной зоны реактора и цепная ядерная реакция гасится большим количеством борсодержащего вещества, хорошо поглощающего нейтроны.

Согласно "Правилам ядерной безопасности реакторных установок атомных станций", по крайней мере одна из предусмотренных систем остановки реактора должна выполнять функцию аварийной защиты (АЗ). Аварийная защита должна иметь не менее двух независимых групп рабочих органов. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений.
Аппаратура АЗ должна состоять минимум из двух независимых комплектов.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы в диапазоне изменения плотности нейтронного потока от 7% до 120% номинального обеспечивалась защита:
1. По плотности нейтронного потока - не менее чем тремя независимыми каналами;
2. По скорости нарастания плотности нейтронного потока - не менее чем тремя независимыми каналами.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте реакторной установки (РУ), обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому необходимо осуществлять защиту.

Управляющие команды каждого комплекта для исполнительных механизмов АЗ должны передаваться минимум по двум каналам. При выводе из работы одного канала в одном из комплектов аппаратуры АЗ без вывода данного комплекта из работы для этого канала должен автоматически формироваться аварийный сигнал.

Срабатывание аварийной защиты должно происходить как минимум в следующих случаях:
1. При достижении уставки АЗ по плотности нейтронного потока.
2. При достижении уставки АЗ по скорости нарастания плотности нейтронного потока.
3. При исчезновении напряжения в любом не выведенном из работы комплекте аппаратуры АЗ и шинах электропитания СУЗ.
4. При отказе любых двух из трех каналов защиты по плотности нейтронного потока или по скорости нарастания нейтронного потока в любом не выведенном из работы комплекте аппаратуры АЗ.
5. При достижении уставок АЗ технологическими параметрами, по которым необходимо осуществлять защиту.
6. При инициировании срабатывания АЗ от ключа с блочного пункта управления (БПУ) или резервного пункта управления (РПУ).

Материал подготовлен интернет-редакцией www.rian.ru на основе информации РИА Новости и открытых источников

Ядерную энергию используют в теплоэнергетике, когда из ядерного топлива в реакторах получают энергию в форме тепла. Оно используется для выработки электрической энергии в атомных электростанциях (АЭС) , для энергетических установок крупных морских судов, для опреснения морской воды.

Ядерная энергетика обязана своим появлением, в первую очередь, природе открытого в 1932 году нейтрона. Нейтроны входят в состав всех атомных ядер, кроме ядра водорода. Связанные нейтроны в ядре существуют бесконечно долго. В свободном виде они недолговечны, так как или распадаются с периодом полураспада 11,7 минуты, превращаясь в протон и испуская при этом электрон и нейтрино, или быстро захватываются ядрами атомов.

Современная ядерная энергетика основана на использовании энергии, выделяющейся при делении природного изотопа урана-235 . На атомных электростанциях управляемая реакция деления ядер осуществляется в ядерном реакторе . По энергии нейтронов, производящих деление ядер, различают реакторы на тепловых и на быстрых нейтронах .

Основной агрегат атомной электростанции — ядерный реактор, схема которого показана на рис. 1. Получают энергию из ядерного топлива, а затем она передается другому рабочему телу (воде, металлической или органической жидкости, газу) в форме тепла; далее ее превращают в электричество по той же схеме, что и в обычных .

Управляют процессом, поддерживают реакцию, стабилизируют мощность, осуществляют пуск и остановку реактора с помощью специальных подвижных управляющих стержней 6 и 7 из материалов, интенсивно поглощающих тепловые нейтроны. Их приводят в движение с помощью системы управления 5 . Действия регулирующих стержней проявляются в изменение мощности потока нейтронов в активной зоне. По каналам 10 циркулирует вода, охлаждающая бетон биологической защиты

Управляющие стержни изготовлены из бора или кадмия, которые термически, радиационно и коррозионно устойчивы, механически прочны, имеют хорошие теплопередающие свойства.

Внутри массивного стального корпуса 3 находится корзина 8 с тепловыделяющими элементами 9 . Теплоноситель поступает по трубопроводу 2 , проходит через активную зону, омывает все тепловыделяющие элементы, нагревается и по трубопроводу 4 поступает в парогенератор.

Рис. 1. Ядерный реактор

Реактор размещен внутри толстого бетонного биологического защитного устройства 1 , которое защищает окружающее пространство от потока нейтронов, альфа-, бета-, гамма-излучения.

Тепловыделяющие элементы (твэлы) главная часть реактора. В них непосредственно происходит ядерная реакция и выделяется тепло, все остальные части служат для изоляции, управления и отвода тепла. Конструктивно твэлы можно выполнить стержневыми, пластинчатыми, трубчатыми, шаровыми и т. д. Чаще всего они стержневые, длиной до 1 метра, диаметром 10 мм. Обычно их собирают из урановых таблеток или из коротких трубок и пластин. Снаружи твэлы покрыты коррозионностойкой, тонкой металлической оболочкой. На оболочку используются циркониевые, алюминиевые, магниевые сплавы, а также легированная нержавеющая сталь.

Передача тепла, выделяющегося при ядерной реакции в активной зоне реактора, к рабочему телу двигателя (турбины) энергетических установок осуществляется по одноконтурной, двухконтурной и трехконтурной схемам (рис. 2).

Рис. 2. Ядерная энергетическая установка
а – по одноконтурной схеме; б – по двухконтурной схеме; в – по трёхконтурной схеме
1 – реактор; 2, 3 – биологическая защита; 4 – регулятор давления; 5 – турбина; 6 – электрогенератор; 7 – конденсатор; 8 – насос; 9 – резервная ёмкость; 10 – регенеративный подогреватель; 11 – парогенератор; 12 – насос; 13 – промежуточный теплообменник

Каждый контур — замкнутая система. Реактор 1 (во всех тепловых схемах) размещен внутри первичной 2 и вторичной 3 биологических защит. Если АЭС построена по одноконтурной тепловой схеме, пар из реактора через регулятор давления 4 поступает в турбину 5 . Вал турбины соединен с валом электрогенератора 6 , в котором вырабатывается электрический ток. Отработавший пар поступает в конденсатор, где охлаждается и полностью конденсируется. Насос 8 направляет конденсат в регенеративный подогреватель 10 , и далее он поступает в реактор.

При двухконтурной схеме нагретый в реакторе теплоноситель поступает в парогенератор 11 , где тепло поверхностным подогревом передается теплоносителю рабочего тела (питательной воде второго контура). В водо-водяных реакторах теплоноситель в парогенераторе охлаждается примерно на 15…40 о С и далее циркуляционным насосом 12 обратно направляется в реактор.


При трехконтурной схеме теплоноситель (обычно жидкий натрий) из реактора направляется в промежуточный теплообменник 13 и оттуда циркуляционным насосом 12 возвращается в реактор. Теплоноситель во втором контуре тоже жидкий натрий. Этот контур не облучается и, следовательно, нерадиоактивен. Натрий второго контура поступает в парогенератор 11 , отдает тепло рабочему телу, а затем циркуляционным насосом отправляется обратно в промежуточный теплообменник.

Число циркуляционных контуров определяет тип реактора, применяемый теплоноситель, его ядерно-физические свойства, степень радиоактивности. Одноконтурная схема может быть использована в кипящих реакторах и в реакторах с газовым теплоносителем. Наибольшее распространение получила двухконтурная схема при использовании в качестве теплоносителя воды, газа и органических жидкостей. Трехконтурная схема применяется на АЭС с реакторами на быстрых нейтронах при использовании жидкометаллических теплоносителей (натрий, калий, сплавы натрий-калий).

Ядерным горючим могут быть уран-235, уран-233 и плутоний-232 . Сырье для получения ядерного топлива — природный уран и торий . При ядерной реакции одного грамма делящегося вещества (уран-235) освобождается энергия, эквивалентная 22×10 3 кВт × ч (19×10 6 кал). Для получения такого количества энергии необходимо сжечь 1900 кг нефти.

Уран-235 легко доступен, его энергетические запасы примерно такие же, как и органического топлива. Однако при использовании ядерного топлива с такой низкой эффективностью, как ныне, доступные урановые источники будут истощены через 50-100 лет. В то же время практически неисчерпаемы «залежи» ядерного топлива — это уран, растворенный в морской воде. В океане его в сотни раз больше, чем на суше. Стоимость получения одного килограмма двуокиси урана из морской воды около 60-80$, а в перспективе снизится до 30$, а стоимость двуокиси урана, добываемой в наиболее богатых месторождениях на суше, 10-20$. Стало быть, через некоторое время затраты на суше и «на морской воде» станут одного и того же порядка.

Стоимость ядерного топлива примерно в два раза ниже, чем ископаемых углей. На электростанциях, работающих на угле, на долю горючего падает 50-70% стоимости электроэнергии, а на АЭС — 15-30%. Современная ТЭС мощностью 2,3 млн кВт (например, Самарская ГРЭС) ежесуточно потребляет около 18 тонн угля (6 железнодорожных составов) или 12 тыс. тонн мазута (4 железнодорожных состава). Атомная же, такой же мощности, расходует в течение суток всего 11 кг ядерного горючего, а в течение года 4 тонны. Однако атомная электростанция дороже тепловой с точки зрения строительства, эксплуатации, ремонта. Например, сооружение АЭС мощностью 2 — 4 млн кВт обходится примерно на 50-100 % дороже, чем тепловой.

Уменьшить капитальные затраты на строительство АЭС возможно за счет:

  1. стандартизации и унификации оборудования;
  2. разработки компактных конструкций реакторов;
  3. совершенствования систем управления и регулирования;
  4. сокращения продолжительности остановки реактора для перегрузки топлива.

Важной характеристикой ядерных энергетических установок (ядерного реактора) является экономичность топливного цикла. Чтобы повысить экономичность топливного цикла, следует:

  • увеличить глубину выгорания ядерного топлива;
  • поднять коэффициент воспроизводства плутония.

При каждом делении ядра урана-235 освобождается 2-3 нейтрона. Из них для дальнейшей реакции используют только один, остальные теряются. Однако существует возможность использовать их для воспроизводства ядерного топлива, создавая реакторы на быстрых нейтронах. При работе реактора на быстрых нейтронах можно на 1 кг сожженного урана-235 одновременно получить примерно 1,7 кг плутония-239. Таким образом можно покрыть низкий термический КПД АЭС.

Реакторы на быстрых нейтронах в десятки раз эффективнее (в плане использования ядерного топлива) реакторов на топливных нейтронах. В них отсутствует замедлитель, применяется высокообогащенное ядерное горючее. Вылетающие из активной зоны нейтроны поглощаются не конструктивными материалами, а расположенным вокруг ураном-238 или торием-232.

В будущем основными делящимися материалами для атомных энергетических установок станут плутоний-239 и уран-233, полученных соответственно из урана-238 и тория-232 в реакторах на быстрых нейтронах. Превращение в реакторах урана -238 в плутоний-239 увеличит ресурсы ядерного топлива примерно в 100 раз, а тория-232 в уран-233 — в 200 раз.

На рис. 3 приведена схема ядерной энергетической установки на быстрых нейтронах.

Отличительными особенностями ядерной электроустановки на быстрых нейтронах являются:

  1. изменение критичности ядерного реактора осуществляется за счет отражения части нейтронов деления ядерного топлива с периферии обратно в активную зону при помощи отражателей 3 ;
  2. отражатели 3 могут поворачиваться, изменяя утечку нейтронов и, следовательно, интенсивность реакций деления;
  3. воспроизводится ядерное топливо;
  4. отвод излишней тепловой энергии от реактора осуществляется при помощи холодильника-излучателя 6 .

Рис. 3. Схема ядерной энергетической установки на быстрых нейтронах:
1 – тепловыделяющие элементы; 2 – воспроизводимое ядерное топливо; 3 – отражатели быстрых нейтронов; 4 – ядерный реактор; 5 – потребитель электроэнергии; 6 – холодильник-излучатель; 7 – преобразователь тепловой энергии в электрическую; 8 – радиационная защита.

Преобразователи тепловой энергии в электрическую

По принципу использования тепловой энергии, вырабатываемой ядерной энергетической установкой, преобразователи можно разделить на 2 класса:

  1. машинные (динамические);
  2. безмашинные (прямые преобразователи).

В машинных преобразователях с реактором обычно связывают газотурбинную установку, в которой рабочим телом может быть водород, гелий, гелий-ксеноновая смесь. Эффективность преобразования в электроэнергию тепла, подведенного непосредственно к турбогенератору, достаточно высока — КПД преобразователя η= 0,7-0,75.

Схема ядерной энергетической установки с динамическим газотурбинным (машинным) преобразователем показана на рис. 4.

Другой тип машинного преобразователя — магнитогазодинамический или магнитогидродинамический генератор (МГДГ). Схема такого генератора приведена на рис. 5. Генератор представляет собой канал прямоугольного сечения, две стенки которого выполнены из диэлектрика, а две — из электропроводящего материала. По каналам движется электропроводящее рабочее тело — жидкое или газообразное, которое пронизывается магнитным полем. Как известно, при движении проводника в магнитном поле возникает ЭДС, которая по электродам 2 передается потребителю электроэнергии 3 . Источником энергии потока рабочего тепла является тепло, выделяющееся в ядерном реакторе. Эта тепловая энергия затрачивается на перемещение зарядов в магнитном поле, т.е. превращается в кинетическую энергию токопроводящей струи, а кинетическая энергия — в электрическую.

Рис. 4. Схема ядерной энергоустановки с газотурбинным преобразователем:
1 – реактор; 2 – контур с жидкометаллическим теплоносителем; 3 – теплообменник для подвода теплоты к газу; 4 – турбина; 5 – электрогенератор; 6 – компрессор; 7 – холодильник-излучатель; 8 – контур отвода теплоты; 9 – насос циркуляционный; 10 – теплообменник для отвода теплоты; 11 – теплообменник-регенератор; 12 – контур с рабочим телом газотурбинного преобразователя.

Прямые преобразователи (безмашинные) тепловой энергии в электрическую подразделяются на:

  1. термоэлектрические;
  2. термоэмиссионные;
  3. электрохимические.

Термоэлектрические генераторы (ТЭГ) основаны на принципе Зеебека, заключающемся в том, что в замкнутой цепи, состоящей из разнородных материалов, возникает термо-ЭДС, если поддерживается разность температур в местах контакта этих материалов (рис. 6). Для получения электроэнергии целесообразно использовать полупроводниковые ТЭГ, имеющие более высокий КПД, при этом температуру горячего спая нужно доводить до 1400 К и выше.

Термоэмиссионные преобразователи (ТЭП) позволяют получать электроэнергию в результате эмиссии электронов с нагретого до высоких температур катода (рис. 7).

Рис. 5. Магнитогазодинамический генератор:
1 – магнитное поле; 2 – электроды; 3 – потребитель электроэнергии; 4 – диэлектрик; 5 – проводник; 6 – рабочее тело (газ).

Рис. 6. Схема работы термоэлектрического генератора

Рис. 7. Схема работы термоэмиссионного преобразователя

Для поддержания тока эмиссии к катоду подводится теплота Q 1 . Эмитируемые катодом электроны, преодолев вакуумный промежуток, достигают анода и поглощаются им. При «конденсации» электронов на аноде выделяется энергия, равная работе выхода электронов с противоположным знаком. Если обеспечить непрерывный подвод теплоты к катоду и отвод её от анода, то через нагрузку R потечет постоянный ток. Электронная эмиссия протекает эффективно при температурах катода выше 2200 К.

Безопасность и надежность работы АЭС

Одним из главных вопросов развития атомной энергетики является обеспечение надёжности и безопасности работы АЭС.

Радиационная безопасность обеспечивается:

  1. созданием надёжных конструкций и устройств биологической защиты персонала от облучений;
  2. очисткой воздуха и воды, выходящих из помещений АЭС за ее пределы;
  3. извлечением и надёжной локализацией радиоактивных загрязнений;
  4. повседневным дозиметрическим контролем помещений АЭС и индивидуальным дозиметрическим контролем персонала.

Помещения АЭС в зависимости от режима работы и установленного в них оборудования делятся на 3 категории:

  1. зона строгого режима;
  2. зона ограниченного режима;
  3. зона нормального режима.

В помещениях третьей категории персонал находится постоянно, эти помещения на станции радиационно безопасны.

При работе АЭС образуются твёрдые, жидкие и газообразные радиоактивные отходы. Они должны выводиться так, чтобы не создавалось загрязнения окружающей среды.

Удаляемые из помещения газы при их вентиляции могут содержать радиоактивные вещества в виде аэрозолей, радиоактивную пыль и радиоактивные газы. Вентиляция станции строится так, чтобы потоки воздуха проходили из наиболее «чистых» в «загрязненные», а перетоки в обратном направлении исключались. Во всех помещениях станции полная замена воздуха производится в течение не более одного часа.

При эксплуатации АЭС возникает проблема удаления и захоронения радиоактивных отходов. Отработавшие в реакторах твэлы выдерживают определенное время в бассейнах с водой непосредственно на АЭС, пока не произойдет стабилизация изотопов с малым временем полураспада, после чего твэлы отправляются на специальные радиохимические заводы для регенерации. Там из твэлов извлекается ядерное горючее, а радиоактивные отходы подлежат захоронению.

Популярные статьи

© 2024 sistemalaki.ru
Бизнес-идеи. Бизнес-планы. Франшизы. База знаний. Документы